Suppr超能文献

优化地高辛剂量:机器学习方法的应用。

Improvement of Adequate Digoxin Dosage: An Application of Machine Learning Approach.

机构信息

Department of Information Management and Institute of Healthcare Information Management, National Chung Cheng University, Chiayi, Taiwan.

Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan.

出版信息

J Healthc Eng. 2018 Aug 19;2018:3948245. doi: 10.1155/2018/3948245. eCollection 2018.

Abstract

Digoxin is a high-alert medication because of its narrow therapeutic range and high drug-to-drug interactions (DDIs). Approximately 50% of digoxin toxicity cases are preventable, which motivated us to improve the treatment outcomes of digoxin. The objective of this study is to apply machine learning techniques to predict the appropriateness of initial digoxin dosage. A total of 307 inpatients who had their conditions treated with digoxin between 2004 and 2013 at a medical center in Taiwan were collected in the study. Ten independent variables, including demographic information, laboratory data, and whether the patients had CHF were also noted. A patient with serum digoxin concentration being controlled at 0.5-0.9 ng/mL after his/her initial digoxin dosage was defined as having an appropriate use of digoxin; otherwise, a patient was defined as having an inappropriate use of digoxin. Weka 3.7.3, an open source machine learning software, was adopted to develop prediction models. Six machine learning techniques were considered, including decision tree (C4.5), -nearest neighbors (kNN), classification and regression tree (CART), randomForest (RF), multilayer perceptron (MLP), and logistic regression (LGR). In the non-DDI group, the area under ROC curve (AUC) of RF (0.912) was excellent, followed by that of MLP (0.813), CART (0.791), and C4.5 (0.784); the remaining classifiers performed poorly. For the DDI group, the AUC of RF (0.892) was the best, followed by CART (0.795), MLP (0.777), and C4.5 (0.774); the other classifiers' performances were less than ideal. The decision tree-based approaches and MLP exhibited markedly superior accuracy performance, regardless of DDI status. Although digoxin is a high-alert medication, its initial dose can be accurately determined by using data mining techniques such as decision tree-based and MLP approaches. Developing a dosage decision support system may serve as a supplementary tool for clinicians and also increase drug safety in clinical practice.

摘要

地高辛是一种高警示药物,因为它的治疗范围较窄,且与药物的相互作用(DDI)较高。大约 50%的地高辛中毒病例是可以预防的,这促使我们改善地高辛的治疗效果。本研究的目的是应用机器学习技术来预测初始地高辛剂量的适宜性。共收集了台湾一家医疗中心 2004 年至 2013 年间使用地高辛治疗的 307 名住院患者。还记录了十个独立变量,包括人口统计学信息、实验室数据以及患者是否患有 CHF。患者初始地高辛剂量后血清地高辛浓度控制在 0.5-0.9ng/mL 定义为地高辛使用适宜;否则,患者被定义为地高辛使用不当。采用开源机器学习软件 Weka 3.7.3 开发预测模型。考虑了六种机器学习技术,包括决策树(C4.5)、-最近邻(kNN)、分类回归树(CART)、随机森林(RF)、多层感知器(MLP)和逻辑回归(LGR)。在非 DDI 组中,RF(0.912)的 ROC 曲线下面积(AUC)表现优异,其次是 MLP(0.813)、CART(0.791)和 C4.5(0.784);其余分类器的性能较差。对于 DDI 组,RF(0.892)的 AUC 最佳,其次是 CART(0.795)、MLP(0.777)和 C4.5(0.774);其他分类器的性能不理想。基于决策树的方法和 MLP 表现出明显更高的准确性,无论 DDI 状态如何。尽管地高辛是一种高警示药物,但它的初始剂量可以通过使用基于决策树和 MLP 等数据挖掘技术来准确确定。开发剂量决策支持系统可以作为临床医生的补充工具,也可以提高临床实践中的药物安全性。

相似文献

8
Comparison of statistical learning approaches for cerebral aneurysm rupture assessment.比较用于评估脑动脉瘤破裂的统计学习方法。
Int J Comput Assist Radiol Surg. 2020 Jan;15(1):141-150. doi: 10.1007/s11548-019-02065-2. Epub 2019 Sep 4.

引用本文的文献

2
Artificial intelligence in the field of pharmacy practice: A literature review.药学实践领域中的人工智能:一篇文献综述。
Explor Res Clin Soc Pharm. 2023 Oct 21;12:100346. doi: 10.1016/j.rcsop.2023.100346. eCollection 2023 Dec.

本文引用的文献

7
Population pharmacokinetics of digoxin in elderly patients.老年患者地高辛的群体药代动力学
Eur J Drug Metab Pharmacokinet. 2013 Jun;38(2):115-21. doi: 10.1007/s13318-012-0107-8. Epub 2012 Oct 25.
8
Therapeutic ranges of serum digoxin concentrations in patients with heart failure.心力衰竭患者血清地高辛浓度的治疗范围。
Am J Cardiol. 2012 Jun 15;109(12):1818-21. doi: 10.1016/j.amjcard.2012.02.028. Epub 2012 Apr 11.
10
The meaning of hypokalemia in heart failure.心力衰竭患者低血钾的意义。
Int J Cardiol. 2012 Jun 28;158(1):12-7. doi: 10.1016/j.ijcard.2011.06.121. Epub 2011 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验