Division for Experimental Anaesthesiology, University Medical Center Freiburg,Hugstetter Str. 55, Freiburg, Germany.
Physiol Meas. 2013 Sep;34(9):1151-61. doi: 10.1088/0967-3334/34/9/1151.
Manual or automated control of mechanical ventilation can be realized as an open or closed-loop system for which the regulation of the ventilation parameters ideally is tuned to the dynamics and equilibration time of the biological system. We investigated the dynamic, transient state and equilibration time (teq) of the CO2 partial pressure (PCO2) after changes in the respiratory rate (RR). In 17 anaesthetized patients without known history of lung disease, respiratory rate was alternately increased and decreased and end-tidal CO2 partial pressures (PetCO2) were measured. Linear relations were found between ΔRR and PetCO2 changes (ΔPetCO2 = 0.3 − 1.1 ΔRR) and between ΔRR and teq for increasing and decreasing RR (teq(hypervent) = 0.5 |ΔRR|, teq(hypovent) = 0.7 |ΔRR|). Extrapolation of the transition between two PCO2 steady-states allowed for the prediction of the new PCO2 steady-state as early as 0.5 teq with an error <4 mmHg. At bedside or in automated ventilation systems, the linear dependencies between ΔRR and ΔPCO2 and between ΔRR and teq as well as early steady-state prediction of PCO2 could be used as a guidance towards a timing and step size regulation of RR that is well adapted to the biological system.
机械通气可以通过手动或自动控制来实现,作为一个开环或闭环系统,其通气参数的调节理想情况下应根据生物系统的动力学和平衡时间进行调整。我们研究了呼吸频率(RR)变化后二氧化碳分压(PCO2)的动态、瞬态和平衡时间(teq)。在 17 名无肺部疾病病史的麻醉患者中,交替增加和减少呼吸频率,并测量呼气末二氧化碳分压(PetCO2)。发现 ΔRR 与 PetCO2 变化之间存在线性关系(ΔPetCO2=0.3-1.1 ΔRR),以及 RR 增加和减少时的 ΔRR 与 teq 之间存在线性关系(teq(过度通气)=0.5|ΔRR|,teq(通气不足)=0.7|ΔRR|)。两个 PCO2 稳态之间的过渡外推允许在新的 PCO2 稳态达到 0.5 teq 时提前预测,误差<4mmHg。在床边或自动化通气系统中,RR 的 ΔRR 和 ΔPCO2 之间以及 ΔRR 和 teq 之间的线性关系,以及 PCO2 的早期稳态预测,可以作为一种指导,使 RR 的时间和步长调节与生物系统很好地适应。