Suppr超能文献

使用基于电势的反演方法重建正常和异常胃电源。

Reconstruction of normal and abnormal gastric electrical sources using a potential based inverse method.

机构信息

Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.

出版信息

Physiol Meas. 2013 Sep;34(9):1193-206. doi: 10.1088/0967-3334/34/9/1193.

Abstract

The use of cutaneous recordings to non-invasively characterize gastric slow waves has had limited clinical acceptance, primarily due to the uncertainty in relating the recorded signal to the underlying gastric slow waves. In this study we aim to distinguish and quantitatively reconstruct different slow wave patterns using an inverse algorithm. Slow wave patterns corresponding to normal, retrograde and uncoupled activity at different frequencies were imposed on a stomach surface model. Gaussian noise (10% peak-to-peak) was added to cutaneous potentials and the Greensite-Tikhonov inverse method was used to reconstruct the potentials on the stomach. The effectiveness of the number or location of electrodes on the accuracy of the inverse solutions was investigated using four different electrode configurations. Results showed the reconstructed solutions were able to reliably distinguish the different slow wave patterns and waves with lower frequency were better correlated to the known solution than those with higher. The use of up to 228 electrodes improved the accuracy of the inverse solutions. However, the use of 120 electrodes concentrated around the stomach was able to achieve similar results. The most efficient electrode configuration for our model involved 120 electrodes with an inter-electrode distance of 32 mm.

摘要

使用皮肤记录无创地描述胃慢波的方法在临床上的接受程度有限,主要是因为记录的信号与潜在的胃慢波之间的关系不确定。在这项研究中,我们旨在使用反演算法区分和定量重建不同的慢波模式。将对应于正常、逆行和不同频率解偶联活动的慢波模式施加于胃表面模型。向皮肤电位添加高斯噪声(峰峰值的 10%),并使用 Greensite-Tikhonov 反演方法在胃上重建电位。使用四种不同的电极配置研究了电极数量或位置对反演解的准确性的影响。结果表明,重建的解能够可靠地区分不同的慢波模式,且低频波与已知解的相关性优于高频波。使用多达 228 个电极可以提高反演解的准确性。然而,使用集中在胃部周围的 120 个电极可以获得相似的结果。对于我们的模型,最有效的电极配置涉及 120 个电极,电极之间的距离为 32mm。

相似文献

1
Reconstruction of normal and abnormal gastric electrical sources using a potential based inverse method.
Physiol Meas. 2013 Sep;34(9):1193-206. doi: 10.1088/0967-3334/34/9/1193.
2
Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods.
Phys Med Biol. 2012 Aug 21;57(16):5205-19. doi: 10.1088/0031-9155/57/16/5205. Epub 2012 Jul 27.
3
Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1355-8. doi: 10.1109/IEMBS.2011.6090319.
4
Detailed measurements of gastric electrical activity and their implications on inverse solutions.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1302-5. doi: 10.1109/IEMBS.2009.5332587.
5
Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
Ann Biomed Eng. 2020 Apr;48(4):1407-1418. doi: 10.1007/s10439-020-02457-5. Epub 2020 Jan 24.
6
Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
Am J Physiol Gastrointest Liver Physiol. 2022 Oct 1;323(4):G295-G305. doi: 10.1152/ajpgi.00049.2022. Epub 2022 Aug 2.
7
Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1448-51. doi: 10.1109/EMBC.2015.7318642.
8
A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
Surg Endosc. 2017 Jan;31(1):477-486. doi: 10.1007/s00464-016-4936-4. Epub 2016 Apr 29.
10
Bayesian inverse methods for spatiotemporal characterization of gastric electrical activity from cutaneous multi-electrode recordings.
PLoS One. 2019 Oct 14;14(10):e0220315. doi: 10.1371/journal.pone.0220315. eCollection 2019.

引用本文的文献

2
Source localization for gastric electrical activity using simulated magnetogastrographic data.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2336-2339. doi: 10.1109/EMBC.2019.8857384.
3
Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.
Front Physiol. 2018 Jan 15;8:1136. doi: 10.3389/fphys.2017.01136. eCollection 2017.
4
Problems with extracellular recording of electrical activity in gastrointestinal muscle.
Nat Rev Gastroenterol Hepatol. 2016 Dec;13(12):731-741. doi: 10.1038/nrgastro.2016.161. Epub 2016 Oct 19.
5
The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications.
Wiley Interdiscip Rev Syst Biol Med. 2016 Jan-Feb;8(1):69-85. doi: 10.1002/wsbm.1324. Epub 2015 Nov 12.
6
A theoretical analysis of the electrogastrogram (EGG).
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4330-3. doi: 10.1109/EMBC.2014.6944582.

本文引用的文献

1
Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods.
Phys Med Biol. 2012 Aug 21;57(16):5205-19. doi: 10.1088/0031-9155/57/16/5205. Epub 2012 Jul 27.
2
Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping.
Gastroenterology. 2012 Sep;143(3):589-598.e3. doi: 10.1053/j.gastro.2012.05.036. Epub 2012 May 27.
3
Influence of body parameters on gastric bioelectric and biomagnetic fields in a realistic volume conductor.
Physiol Meas. 2012 Apr;33(4):545-56. doi: 10.1088/0967-3334/33/4/545. Epub 2012 Mar 14.
5
High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia.
Neurogastroenterol Motil. 2011 Sep;23(9):e345-55. doi: 10.1111/j.1365-2982.2011.01739.x. Epub 2011 Jun 30.
6
Effects of volume conductor and source configuration on simulated magnetogastrograms.
Phys Med Biol. 2010 Nov 21;55(22):6881-95. doi: 10.1088/0031-9155/55/22/018. Epub 2010 Nov 3.
7
A multiscale model of the electrophysiological basis of the human electrogastrogram.
Biophys J. 2010 Nov 3;99(9):2784-92. doi: 10.1016/j.bpj.2010.08.067.
8
Gut peristalsis is governed by a multitude of cooperating mechanisms.
Am J Physiol Gastrointest Liver Physiol. 2009 Jan;296(1):G1-8. doi: 10.1152/ajpgi.90380.2008. Epub 2008 Nov 6.
9
Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias.
Gastroenterology. 2008 Nov;135(5):1601-11. doi: 10.1053/j.gastro.2008.07.020. Epub 2008 Jul 22.
10
Quantitative cellular description of gastric slow wave activity.
Am J Physiol Gastrointest Liver Physiol. 2008 Apr;294(4):G989-95. doi: 10.1152/ajpgi.00528.2007. Epub 2008 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验