Suppr超能文献

人类胃电图电生理基础的多尺度模型。

A multiscale model of the electrophysiological basis of the human electrogastrogram.

机构信息

Auckland Bioengineering Institute, The University of Auckland, New Zealand.

出版信息

Biophys J. 2010 Nov 3;99(9):2784-92. doi: 10.1016/j.bpj.2010.08.067.

Abstract

The motility of the stomach is coordinated by an electrical activity termed "slow waves", and slow-wave dysrhythmias contribute to motility disorders. One major method for clinically evaluating gastric dysrhythmias has been electrogastrography (EGG); however, the clinical utility of EGG is limited partly due to the uncertainty regarding its electrophysiological basis. In this study, a multiscale model of gastric slow waves was generated from a biophysically based continuum description of cellular electrical events, coupled with a subject-specific human stomach model and high-resolution electrical mapping data. The model was then applied using a forward-modeling approach, within an anatomical torso model, to define how slow wave activity summates to generate the EGG potentials. The simulated EGG potentials were shown to be spatially varying in amplitude (0.27-0.33 mV) and duration (9.2-15.3 s), and the sources of this variance were quantified with respect to the activation timings of the underlying slow wave activity. This model constitutes an improved theory of the electrophysiological basis of the EGG, and offers a framework for optimizing the placement of EGG electrodes, and for interpreting the EGG changes occurring in disease states.

摘要

胃的运动是由称为“慢波”的电活动协调的,而慢波节律紊乱会导致运动障碍。评估胃节律紊乱的一种主要临床方法是胃电图(EGG);然而,EGG 的临床应用受到限制,部分原因是其电生理基础存在不确定性。在这项研究中,从细胞电事件的基于生理的连续体描述出发,生成了胃慢波的多尺度模型,同时结合了特定于个体的人体胃模型和高分辨率的电映射数据。然后,该模型通过正向建模方法,在解剖学躯干模型中应用,以定义慢波活动如何总和以产生 EGG 电位。模拟的 EGG 电位在幅度(0.27-0.33 mV)和持续时间(9.2-15.3 s)上表现出空间变化,并且相对于潜在慢波活动的激活时间对这种变化的来源进行了量化。该模型构成了 EGG 的电生理基础的改进理论,并为优化 EGG 电极的放置以及解释疾病状态下发生的 EGG 变化提供了框架。

相似文献

9
Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.胃慢波时空参数的生物磁特性
Neurogastroenterol Motil. 2006 Aug;18(8):619-31. doi: 10.1111/j.1365-2982.2006.00794.x.

引用本文的文献

7
Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities.胃肠道慢波异常的数学建模进展
Front Physiol. 2018 Jan 15;8:1136. doi: 10.3389/fphys.2017.01136. eCollection 2017.
8
Multiscale modeling methods in biomechanics.生物力学中的多尺度建模方法。
Wiley Interdiscip Rev Syst Biol Med. 2017 May;9(3). doi: 10.1002/wsbm.1375. Epub 2017 Jan 19.
10
Effect of Body Mass Index on the sensitivity of Magnetogastrogram and Electrogastrogram.体重指数对磁胃图和胃电图敏感性的影响。
J Gastroenterol Hepatol Res. 2013;2(4):513-519. doi: 10.6051/j.issn.2224-3992.2013.02.244. Epub 2013 Apr 21.

本文引用的文献

1
Gastrointestinal system.消化系统。
Wiley Interdiscip Rev Syst Biol Med. 2010 Jan-Feb;2(1):65-79. doi: 10.1002/wsbm.19.
4
Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.高分辨率标测定义的人类胃慢波活动的起源和传播。
Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G585-92. doi: 10.1152/ajpgi.00125.2010. Epub 2010 Jul 1.
6
A model of slow wave propagation and entrainment along the stomach.沿胃慢波传播和夹带的模型。
Ann Biomed Eng. 2010 Sep;38(9):3022-30. doi: 10.1007/s10439-010-0051-1. Epub 2010 May 1.
9
Surface current density mapping for identification of gastric slow wave propagation.用于识别胃慢波传播的表面电流密度映射
IEEE Trans Biomed Eng. 2009 Aug;56(8):2131-9. doi: 10.1109/TBME.2009.2021576. Epub 2009 Apr 28.
10
Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.犬胃慢波的起源与传播:胃传导系统概述
Am J Physiol Gastrointest Liver Physiol. 2009 Jun;296(6):G1200-10. doi: 10.1152/ajpgi.90581.2008. Epub 2009 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验