Suppr超能文献

一种基于深度卷积神经网络的方法,用于从高分辨率胃电图中分类正常和异常胃慢波起始。

A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.

出版信息

IEEE Trans Biomed Eng. 2020 Mar;67(3):854-867. doi: 10.1109/TBME.2019.2922235. Epub 2019 Jun 12.

Abstract

OBJECTIVE

Gastric slow wave abnormalities have been associated with gastric motility disorders. Invasive studies in humans have described normal and abnormal propagation of the slow wave. This study aims to disambiguate the abnormally functioning wave from one of normalcy using multi-electrode abdominal waveforms of the electrogastrogram (EGG).

METHODS

Human stomach and abdominal models are extracted from computed tomography scans. Normal and abnormal slow waves are simulated along stomach surfaces. Current dipoles at the stomachs surface are propagated to virtual electrodes on the abdomen with a forward model. We establish a deep convolutional neural network (CNN) framework to classify normal and abnormal slow waves from the multi-electrode waveforms. We investigate the effects of non-idealized measurements on performance, including shifted electrode array positioning, smaller array sizes, high body mass index (BMI), and low signal-to-noise ratio (SNR). We compare the performance of our deep CNN to a linear discriminant classifier using wave propagation spatial features.

RESULTS

A deep CNN framework demonstrated robust classification, with accuracy above 90% for all SNR above 0 dB, horizontal shifts within 3 cm, vertical shifts within 6 cm, and abdominal tissue depth within 6 cm. The linear discriminant classifier was much more vulnerable to SNR, electrode placement, and BMI.

CONCLUSION

This is the first study to attempt and, moreover, succeed in using a deep CNN to disambiguate normal and abnormal gastric slow wave patterns from high-resolution EGG data.

SIGNIFICANCE

These findings suggest that multi-electrode cutaneous abdominal recordings have the potential to serve as widely deployable clinical screening tools for gastrointestinal foregut disorders.

摘要

目的

胃慢波异常与胃动力障碍有关。人体的侵入性研究已经描述了慢波的正常和异常传播。本研究旨在使用体表胃电图(EGG)多电极腹部波形来区分异常功能波和正常波。

方法

从计算机断层扫描中提取人体胃和腹部模型。沿着胃表面模拟正常和异常的慢波。利用正向模型,将胃表面的电流偶极子传播到腹部虚拟电极上。我们建立了一个深度卷积神经网络(CNN)框架,用于从多电极波形中分类正常和异常的慢波。我们研究了非理想测量对性能的影响,包括电极阵列位置偏移、较小的阵列尺寸、较高的体重指数(BMI)和较低的信噪比(SNR)。我们将我们的深度 CNN 与使用波传播空间特征的线性判别分类器的性能进行了比较。

结果

深度 CNN 框架表现出强大的分类能力,在所有 SNR 高于 0dB、水平偏移在 3cm 以内、垂直偏移在 6cm 以内和腹部组织深度在 6cm 以内的情况下,准确率均高于 90%。线性判别分类器对 SNR、电极位置和 BMI 更为敏感。

结论

这是首次尝试并成功使用深度 CNN 从高分辨率 EGG 数据中区分正常和异常胃慢波模式的研究。

意义

这些发现表明,多电极皮肤腹部记录有潜力成为胃肠道前肠障碍的广泛可部署临床筛查工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验