Suppr超能文献

基于医生转诊和保险理赔数据的风险预测方法在初级保健中识别患者进行护理管理的比较:一项观察性研究。

Comparison of physician referral and insurance claims data-based risk prediction as approaches to identify patients for care management in primary care: an observational study.

机构信息

Department of General Practice and Health Services Research, University Hospital Heidelberg, Vossstrasse 2, D-69115 Heidelberg, Germany.

出版信息

BMC Fam Pract. 2013 Oct 20;14:157. doi: 10.1186/1471-2296-14-157.

Abstract

BACKGROUND

Primary care-based care management (CM) could reduce hospital admissions in high-risk patients. Identification of patients most likely to benefit is needed as resources for CM are limited. This study aimed to compare hospitalization and mortality rates of patients identified for CM either by treating primary care physicians (PCPs) or predictive modelling software for hospitalization risk (PM).

METHODS

In 2009, a cohort of 6,026 beneficiaries of a German statutory health insurance served as a sample for patient identification for CM by PCPs or commercial PM (CSSG 0.8, Verisk Health). The resulting samples were compared regarding hospitalization and mortality rates in 2010 and in the two year period before patient selection. No CM-intervention was delivered until the end of 2010 and PCPs were blinded for the assessment of hospitalization rates.

RESULTS

In 2010, hospitalization rates of PM-identified patients were 80% higher compared to PCP-identified patients. Mortality rates were also 8% higher in PM-identified patients if compared to PCP-identified patients (10% vs. 2%). The hospitalization rate of patients independently identified by both PM and PCPs was numerically between PM- and PCP-identified patients. Time trend between 2007 and 2010 showed decreasing hospitalization rates in PM-identified patients (-15% per year) compared to increasing rates in PCP-identified patients (+34% per year).

CONCLUSIONS

PM identified patients with higher hospitalization and mortality rates compared to PCP-referred patients. But the latter showed increasing hospitalization rates over time thereby suggesting that PCPs may be able to predict future deterioration in patients with relatively good current health status. These patients may most likely benefit from preventive services like CM.

摘要

背景

基于初级保健的护理管理(CM)可以减少高危患者的住院率。由于 CM 资源有限,因此需要确定最有可能从中受益的患者。本研究旨在比较通过初级保健医生(PCP)或住院风险预测模型软件(PM)识别的患者的住院率和死亡率。

方法

2009 年,德国法定健康保险的 6026 名受益人为样本,由 PCP 或商业 PM(CSSG 0.8,Verisk Health)对 CM 患者进行识别。比较了这两个样本在 2010 年以及在患者选择前两年的住院率和死亡率。直到 2010 年底才进行 CM 干预,并且 PCP 对住院率的评估是盲法的。

结果

在 2010 年,PM 识别的患者的住院率比 PCP 识别的患者高 80%。如果与 PCP 识别的患者相比,PM 识别的患者的死亡率也高 8%(10%比 2%)。PM 和 PCP 独立识别的患者的住院率在 PM 和 PCP 识别的患者之间是数值上的。2007 年至 2010 年的时间趋势显示,PM 识别的患者的住院率呈下降趋势(每年下降 15%),而 PCP 识别的患者的住院率呈上升趋势(每年上升 34%)。

结论

PM 识别的患者与 PCP 转诊的患者相比,住院率和死亡率更高。但后者的住院率随着时间的推移而增加,这表明 PCP 可能能够预测当前健康状况相对较好的患者未来的病情恶化。这些患者可能最受益于预防性服务,如 CM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/901b/3856595/3617be1d0844/1471-2296-14-157-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验