a GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, Germany; and.
Radiat Res. 2013 Nov;180(5):524-38. doi: 10.1667/RR13389.1. Epub 2013 Oct 21.
We report here on a DNA double-strand break (DSB) kinetic rejoining model applicable to a wide range of radiation qualities based on the DNA damage pattern predicted by the local effect model (LEM). In the LEM this pattern is derived from the SSB and DSB yields after photon irradiation in combination with an amorphous track structure approach. Together with the assumption of a giant-loop organization to describe the higher order chromatin structure this allows the definition of two different classes of DSB. These classes are defined by the level of clustering on a micrometer scale, i.e., "isolated DSB" (iDSB) are characterized by a single DSB in a giant loop and "clustered DSB" (cDSB) by two or more DSB in a loop. Clustered DSB are assumed to represent a more difficult challenge for the cell repair machinery compared to isolated DSB, and we thus hypothesize here that the fraction of isolated DSB can be identified with the fast component of rejoining, whereas clustered DSB are identified with the slow component of rejoining. The resulting predicted bi-exponential decay functions nicely reproduce the experimental curves of DSB rejoining over time obtained by means of gel electrophoresis elution techniques as reported by different labs, involving different cell types and a wide spectrum of radiation qualities. New experimental data are also presented aimed at investigating the effects of the same ion species accelerated at different energies. The results presented here further support the relevance of the proposed two classes of DSB as a basis for understanding cell response to ion irradiation. Importantly the density of DSB within DNA giant loops of around 2 Mbp size, i.e., on a micrometer scale, is identified as a key parameter for the description of radiation effectiveness.
我们在此报告了一个适用于广泛辐射质量的 DNA 双链断裂 (DSB) 动力学重接模型,该模型基于局部效应模型 (LEM) 预测的 DNA 损伤模式。在 LEM 中,该模式源自光子辐照后的 SSB 和 DSB 产额,结合非晶形轨迹结构方法。结合描述更高阶染色质结构的巨环组织的假设,这允许定义两种不同类别的 DSB。这些类别由微米尺度上的聚类水平定义,即“孤立 DSB”(iDSB)的特征是在巨环中有单个 DSB,而“聚类 DSB”(cDSB)的特征是在一个环中有两个或更多 DSB。与孤立 DSB 相比,聚类 DSB 被认为对细胞修复机制构成更大的挑战,因此我们在这里假设,孤立 DSB 的分数可以与重接的快速成分相关联,而聚类 DSB 可以与重接的缓慢成分相关联。由此产生的预测双指数衰减函数很好地再现了不同实验室通过凝胶电泳洗脱技术获得的随时间变化的 DSB 重接的实验曲线,涉及不同的细胞类型和广泛的辐射质量。还提出了新的实验数据,旨在研究相同离子物种在不同能量下加速的影响。这里呈现的结果进一步支持了所提出的两类 DSB 作为理解细胞对离子辐照反应的基础的相关性。重要的是,大小约为 2 Mbp 的 DNA 巨环内的 DSB 密度,即在微米尺度上,被确定为描述辐射有效性的关键参数。