Suppr超能文献

胶连性调整了 FG 核孔蛋白结构域网架的组装和形态 - 对核孔通透性的影响。

Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks - Implications for nuclear pore permeability.

机构信息

Biosurfaces Unit, CIC biomaGUNE, San Sebastian, Spain; Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Biophys J. 2013 Oct 15;105(8):1860-70. doi: 10.1016/j.bpj.2013.09.006.

Abstract

Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few kBT per chain, and contribute important information to understand the mechanism of size-selective transport.

摘要

核孔复合物控制着细胞质和细胞核之间大分子的交换。一种选择性的渗透率屏障,是由富含苯丙氨酸-甘氨酸二肽(FG 结构域)的内在无规卷曲核孔蛋白结构域的超分子组装形成的。越来越多的证据表明,选择性运输需要 FG 结构域之间的内聚相互作用。为了理解内聚相互作用的功能作用,我们研究了末端接枝 FG 结构域的单层膜作为通透性屏障的自下而上的纳米级模型系统。基于对模型膜的详细物理化学分析,并将数据与聚合物理论进行比较,我们提出,内聚性被调谐以促进通透性屏障的快速组装,并生成一个稳定且紧凑的孔填充网格,具有较小的网格尺寸。我们的结果突出了弱相互作用(通常每链几个 kBT)的功能重要性,并为理解大小选择性运输的机制提供了重要信息。

相似文献

2
Ultrathin nucleoporin phenylalanine-glycine repeat films and their interaction with nuclear transport receptors.
EMBO Rep. 2010 May;11(5):366-72. doi: 10.1038/embor.2010.34. Epub 2010 Apr 9.
5
The Role of Cohesiveness in the Permeability of the Spatial Assemblies of FG Nucleoporins.
Biophys J. 2019 Apr 2;116(7):1204-1215. doi: 10.1016/j.bpj.2019.02.028. Epub 2019 Mar 7.
7
Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex.
Cell. 2007 Apr 6;129(1):83-96. doi: 10.1016/j.cell.2007.01.044.
8
Conserved spatial organization of FG domains in the nuclear pore complex.
Biophys J. 2013 Jan 8;104(1):37-50. doi: 10.1016/j.bpj.2012.11.3823.
9
In vivo analysis of human nucleoporin repeat domain interactions.
Mol Biol Cell. 2013 Apr;24(8):1222-31. doi: 10.1091/mbc.E12-08-0585. Epub 2013 Feb 20.
10
The HIV capsid mimics karyopherin engagement of FG-nucleoporins.
Nature. 2024 Feb;626(8000):836-842. doi: 10.1038/s41586-023-06969-7. Epub 2024 Jan 24.

引用本文的文献

1
Channel width modulates the permeability of DNA origami-based nuclear pore mimics.
Sci Adv. 2024 Nov 15;10(46):eadq8773. doi: 10.1126/sciadv.adq8773. Epub 2024 Nov 13.
2
Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics.
Nucleus. 2024 Dec;15(1):2399247. doi: 10.1080/19491034.2024.2399247. Epub 2024 Sep 16.
3
Channel width modulates the permeability of DNA origami based nuclear pore mimics.
bioRxiv. 2024 May 12:2024.05.09.593438. doi: 10.1101/2024.05.09.593438.
4
Kinetic cooperativity resolves bidirectional clogging within the nuclear pore complex.
Biophys J. 2024 May 7;123(9):1085-1097. doi: 10.1016/j.bpj.2024.03.027. Epub 2024 Apr 18.
5
Self-regulation of the nuclear pore complex enables clogging-free crowded transport.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2212874120. doi: 10.1073/pnas.2212874120. Epub 2023 Feb 9.
6
A simple thermodynamic description of phase separation of Nup98 FG domains.
Nat Commun. 2022 Oct 18;13(1):6172. doi: 10.1038/s41467-022-33697-9.
7
Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.
Phys Rep. 2021 Jul 25;921:1-53. doi: 10.1016/j.physrep.2021.03.003. Epub 2021 Mar 24.
8
DNA-Origami NanoTrap for Studying the Selective Barriers Formed by Phenylalanine-Glycine-Rich Nucleoporins.
J Am Chem Soc. 2021 Aug 11;143(31):12294-12303. doi: 10.1021/jacs.1c05550. Epub 2021 Jul 29.
9
Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation.
Langmuir. 2021 Apr 27;37(16):4943-4952. doi: 10.1021/acs.langmuir.1c00271. Epub 2021 Apr 14.

本文引用的文献

1
Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3363-8. doi: 10.1073/pnas.1212909110. Epub 2013 Feb 12.
2
Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes.
EMBO J. 2013 Jan 23;32(2):204-18. doi: 10.1038/emboj.2012.302. Epub 2012 Nov 30.
3
Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16911-6. doi: 10.1073/pnas.1208440109. Epub 2012 Oct 4.
4
Bistable collective behavior of polymers tethered in a nanopore.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061917. doi: 10.1103/PhysRevE.85.061917. Epub 2012 Jun 21.
7
The human nuclear pore complex as revealed by cryo-electron tomography.
Structure. 2012 Jun 6;20(6):998-1006. doi: 10.1016/j.str.2012.03.025. Epub 2012 May 24.
8
Functional architecture of the nuclear pore complex.
Annu Rev Biophys. 2012;41:557-84. doi: 10.1146/annurev-biophys-050511-102328.
9
Self-regulated viscous channel in the nuclear pore complex.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7326-31. doi: 10.1073/pnas.1201724109. Epub 2012 Apr 23.
10
A jumbo problem: mapping the structure and functions of the nuclear pore complex.
Curr Opin Cell Biol. 2012 Feb;24(1):92-9. doi: 10.1016/j.ceb.2011.12.013. Epub 2012 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验