Biosurfaces Unit, CIC biomaGUNE, San Sebastian, Spain; Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Biophys J. 2013 Oct 15;105(8):1860-70. doi: 10.1016/j.bpj.2013.09.006.
Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few kBT per chain, and contribute important information to understand the mechanism of size-selective transport.
核孔复合物控制着细胞质和细胞核之间大分子的交换。一种选择性的渗透率屏障,是由富含苯丙氨酸-甘氨酸二肽(FG 结构域)的内在无规卷曲核孔蛋白结构域的超分子组装形成的。越来越多的证据表明,选择性运输需要 FG 结构域之间的内聚相互作用。为了理解内聚相互作用的功能作用,我们研究了末端接枝 FG 结构域的单层膜作为通透性屏障的自下而上的纳米级模型系统。基于对模型膜的详细物理化学分析,并将数据与聚合物理论进行比较,我们提出,内聚性被调谐以促进通透性屏障的快速组装,并生成一个稳定且紧凑的孔填充网格,具有较小的网格尺寸。我们的结果突出了弱相互作用(通常每链几个 kBT)的功能重要性,并为理解大小选择性运输的机制提供了重要信息。