Suppr超能文献

双功能转化酶的共价修饰循环中的灵敏度和稳健性。

Sensitivity and robustness in covalent modification cycles with a bifunctional converter enzyme.

机构信息

Analysis and Redesign of Biological Networks Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.

出版信息

Biophys J. 2013 Oct 15;105(8):1925-33. doi: 10.1016/j.bpj.2013.09.010.

Abstract

Regulation by covalent modification is a common mechanism to transmit signals in biological systems. The modifying reactions are catalyzed either by two distinct converter enzymes or by a single bifunctional enzyme (which may employ either one or two catalytic sites for its opposing activities). The reason for this diversification is unclear, but contemporary theoretical models predict that systems with distinct converter enzymes can exhibit enhanced sensitivity to input signals whereas bifunctional enzymes with two catalytic sites are believed to generate robustness against variations in system's components. However, experiments indicate that bifunctional enzymes can also exhibit enhanced sensitivity due to the zero-order effect, raising the question whether both phenomena could be understood within a common mechanistic model. Here, I argue that this is, indeed, the case. Specifically, I show that bifunctional enzymes with two catalytic sites can exhibit both ultrasensitivity and concentration robustness, depending on the kinetic operating regime of the enzyme's opposing activities. The model predictions are discussed in the context of experimental observations of ultrasensitivity and concentration robustness in the uridylylation cycle of the PII protein, and in the phosphorylation cycle of the isocitrate dehydrogenase, respectively.

摘要

共价修饰调节是生物系统中传递信号的一种常见机制。这些修饰反应要么由两种不同的转换酶催化,要么由一种具有两个活性位点的双功能酶催化(其可能使用一个或两个催化位点来进行相反的活性)。这种多样化的原因尚不清楚,但当代理论模型预测,具有不同转换酶的系统可以对输入信号表现出更高的敏感性,而具有两个活性位点的双功能酶则被认为对系统成分的变化具有鲁棒性。然而,实验表明,双功能酶也可以由于零级效应而表现出更高的敏感性,这就提出了一个问题,即这两种现象是否可以在一个共同的机制模型中得到理解。在这里,我认为确实如此。具体来说,我表明,具有两个活性位点的双功能酶可以根据酶相反活性的动力学工作模式表现出超敏性和浓度鲁棒性。该模型预测在 PII 蛋白的尿苷酰化循环和异柠檬酸脱氢酶的磷酸化循环中分别表现出超敏性和浓度鲁棒性的实验观察的背景下进行了讨论。

相似文献

1
Sensitivity and robustness in covalent modification cycles with a bifunctional converter enzyme.
Biophys J. 2013 Oct 15;105(8):1925-33. doi: 10.1016/j.bpj.2013.09.010.
3
Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.
PLoS Comput Biol. 2014 May 8;10(5):e1003614. doi: 10.1371/journal.pcbi.1003614. eCollection 2014 May.
4
The isocitrate dehydrogenase phosphorylation cycle: regulation and enzymology.
J Cell Biochem. 1993 Jan;51(1):14-8. doi: 10.1002/jcb.240510104.
5
The phosphatase mechanism of bifunctional kinase/phosphatase AceK.
Chem Commun (Camb). 2014 Nov 25;50(91):14117-20. doi: 10.1039/c4cc05375c.
6
Operating regimes of covalent modification cycles at high enzyme concentrations.
J Theor Biol. 2017 Oct 27;431:39-48. doi: 10.1016/j.jtbi.2017.08.006. Epub 2017 Aug 4.
8
Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
J Mol Microbiol Biotechnol. 2005;9(3-4):132-46. doi: 10.1159/000089642.

引用本文的文献

3
When More Is Less: Dual Phosphorylation Protects Signaling Off State against Overexpression.
Biophys J. 2018 Oct 2;115(7):1383-1392. doi: 10.1016/j.bpj.2018.08.019. Epub 2018 Aug 23.
4
Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling.
J Cell Physiol. 2018 Mar;233(3):1897-1912. doi: 10.1002/jcp.26017. Epub 2017 Jun 15.
5
GlnK Facilitates the Dynamic Regulation of Bacterial Nitrogen Assimilation.
Biophys J. 2017 May 23;112(10):2219-2230. doi: 10.1016/j.bpj.2017.04.012.
7
Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.
PLoS Comput Biol. 2014 May 8;10(5):e1003614. doi: 10.1371/journal.pcbi.1003614. eCollection 2014 May.
8
A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis.
J Biol Chem. 2014 May 9;289(19):13010-25. doi: 10.1074/jbc.M113.546515. Epub 2014 Mar 14.

本文引用的文献

1
Reciprocal enzyme regulation as a source of bistability in covalent modification cycles.
J Theor Biol. 2013 Aug 7;330:56-74. doi: 10.1016/j.jtbi.2013.04.002. Epub 2013 Apr 11.
2
Probing kinase and phosphatase activities of two-component systems in vivo with concentration-dependent phosphorylation profiling.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):672-7. doi: 10.1073/pnas.1214587110. Epub 2012 Dec 24.
3
Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli.
J Biol Chem. 2013 Feb 22;288(8):5770-8. doi: 10.1074/jbc.M112.339226. Epub 2012 Nov 28.
5
Comment on "load-induced modulation of signal transduction networks": reconciling ultrasensitivity with bifunctionality?
Sci Signal. 2012 Jan 3;5(205):lc1; author reply lc2. doi: 10.1126/scisignal.2002699.
6
Load-induced modulation of signal transduction networks.
Sci Signal. 2011 Oct 11;4(194):ra67. doi: 10.1126/scisignal.2002152.
7
Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli.
Mol Cell. 2011 Jan 7;41(1):117-27. doi: 10.1016/j.molcel.2010.12.023.
8
Structure of the bifunctional isocitrate dehydrogenase kinase/phosphatase.
Nature. 2010 Jun 17;465(7300):961-5. doi: 10.1038/nature09088. Epub 2010 May 26.
9
Signaling properties of a covalent modification cycle are altered by a downstream target.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10032-7. doi: 10.1073/pnas.0913815107. Epub 2010 May 17.
10
Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein.
J Bacteriol. 2010 Jun;192(11):2711-21. doi: 10.1128/JB.01674-09. Epub 2010 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验