Department of Plant Biology, Unit of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain.
CIMMYT Southern Africa Regional Office, Harare, Zimbabwe.
Trends Plant Sci. 2014 Jan;19(1):52-61. doi: 10.1016/j.tplants.2013.09.008. Epub 2013 Oct 16.
Constraints in field phenotyping capability limit our ability to dissect the genetics of quantitative traits, particularly those related to yield and stress tolerance (e.g., yield potential as well as increased drought, heat tolerance, and nutrient efficiency, etc.). The development of effective field-based high-throughput phenotyping platforms (HTPPs) remains a bottleneck for future breeding advances. However, progress in sensors, aeronautics, and high-performance computing are paving the way. Here, we review recent advances in field HTPPs, which should combine at an affordable cost, high capacity for data recording, scoring and processing, and non-invasive remote sensing methods, together with automated environmental data collection. Laboratory analyses of key plant parts may complement direct phenotyping under field conditions. Improvements in user-friendly data management together with a more powerful interpretation of results should increase the use of field HTPPs, therefore increasing the efficiency of crop genetic improvement to meet the needs of future generations.
田间表型能力的限制限制了我们解析数量性状遗传的能力,特别是与产量和胁迫耐受性相关的性状(例如,产量潜力以及提高耐旱性、耐热性和养分效率等)。开发有效的基于田间的高通量表型平台(HTPP)仍然是未来育种进展的瓶颈。然而,传感器、航空航天和高性能计算方面的进展正在为此铺平道路。在这里,我们回顾了田间 HTPP 的最新进展,这些进展应该以可承受的成本相结合,具有高数据记录、评分和处理能力,以及非侵入性的遥感方法,并结合自动化的环境数据收集。对关键植物部分的实验室分析可以补充田间条件下的直接表型。改进用户友好的数据管理以及更强大的结果解释应该会增加田间 HTPP 的使用,从而提高作物遗传改良的效率,以满足后代的需求。