将作物建模与传感技术整合到营养品质和胁迫耐受性分子育种中。
Integration of crop modeling and sensing into molecular breeding for nutritional quality and stress tolerance.
作者信息
Berlingeri Jonathan, Fuentes Abelina, Ranario Earl, Yun Heesup, Rim Ellen Y, Garrett Oscar, Howard Alexander, LaPorte Mary-Francis, Lo Sassoum, Pauli Duke, Hershberger Jenna, Earles Mason, Van Deynze Allen, Brummer Edward Charles, Michelmore Richard, Wong Christopher Y S, Magney Troy S, Ronald Pamela C, Runcie Daniel E, Bailey Brian N, Diepenbrock Christine H
机构信息
Department of Plant Sciences, University of California, Davis, USA.
Department of Biological & Agricultural Engineering, University of California, Davis, USA.
出版信息
Theor Appl Genet. 2025 Aug 8;138(9):205. doi: 10.1007/s00122-025-04984-y.
Integrating innovative technologies into plant breeding is critical to bolster food and nutritional security under biotic and abiotic stresses in changing climates. While breeding efforts have focused primarily on yield and stress tolerance, emerging evidence highlights the need to also prioritize nutritional quality. Advanced molecular breeding approaches have enhanced our ability to develop improved crop varieties and could be substantially informed by the routine integration of crop modeling and remote sensing technologies. This review article discusses the potential of combining crop modeling and sensing with molecular breeding to address the dual challenge of nutritional quality and stress tolerance. We provide overviews of stress response strategies, challenges in breeding for quality traits, and the use of environmental data in genomic prediction. We also describe the status of crop modeling and sensing technologies in grain legumes, rice, and leafy greens, alongside the status of -omics tools in these crops and the use of AI with directed evolution to identify novel resistance genes. We describe the pairwise and three-way integration of AI-enabled sensing and biophysically and empirically constrained crop modeling into breeding to enable prediction of phenotypic and breeding values and dissection of genotype-by-environment-by-management interactions with increasing fidelity, efficiency, and temporal/spatial resolution to inform selection decisions. This article highlights current initiatives and future trends that focus on leveraging these advancements to develop more climate-resilient and nutritionally dense crops, ultimately enhancing the effectiveness of molecular breeding.
将创新技术融入植物育种对于在气候变化背景下增强生物和非生物胁迫下的粮食及营养安全至关重要。虽然育种工作主要集中在产量和胁迫耐受性上,但新出现的证据强调了将营养品质也作为优先事项的必要性。先进的分子育种方法提高了我们培育改良作物品种的能力,并且可以通过作物建模和遥感技术的常规整合得到很大的启发。这篇综述文章讨论了将作物建模和传感与分子育种相结合以应对营养品质和胁迫耐受性双重挑战的潜力。我们概述了胁迫响应策略、品质性状育种中的挑战以及环境数据在基因组预测中的应用。我们还描述了谷物豆类、水稻和叶菜类作物的作物建模和传感技术的现状,以及这些作物中的组学工具的现状以及利用人工智能与定向进化来鉴定新的抗性基因的情况。我们描述了将人工智能驱动的传感与生物物理和经验约束的作物建模进行两两整合和三方整合到育种中,以实现对表型和育种值的预测,并以更高的保真度、效率和时空分辨率剖析基因型×环境×管理相互作用,为选择决策提供信息。本文强调了当前的举措和未来趋势,这些举措和趋势侧重于利用这些进展来培育更具气候适应性和营养密集型的作物,最终提高分子育种的有效性。