Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nat Nanotechnol. 2013 Nov;8(11):865-72. doi: 10.1038/nnano.2013.209. Epub 2013 Oct 20.
Nanoparticles coated with DNA molecules can be programmed to self-assemble into three-dimensional superlattices. Such superlattices can be made from nanoparticles with different functionalities and could potentially exploit the synergetic properties of the nanoscale components. However, the approach has so far been used primarily with single-component systems. Here, we report a general strategy for the creation of heterogeneous nanoparticle superlattices using DNA and carboxylic-based conjugation. We show that nanoparticles with all major types of functionality--plasmonic (gold), magnetic (Fe2O3), catalytic (palladium) and luminescent (CdSe/Te@ZnS and CdSe@ZnS)--can be incorporated into binary systems in a rational manner. We also examine the effect of nanoparticle characteristics (including size, shape, number of DNA per particle and DNA flexibility) on the phase behaviour of the heterosystems, and demonstrate that the assembled materials can have novel optical and field-responsive properties.
用 DNA 分子包裹的纳米粒子可以被编程,使其自组装成三维超晶格。这种超晶格可以由具有不同功能的纳米粒子制成,并可能利用纳米级组件的协同特性。然而,到目前为止,这种方法主要用于单一成分系统。在这里,我们报告了一种使用 DNA 和羧酸基连接物创建异质纳米粒子超晶格的通用策略。我们表明,所有主要功能类型的纳米粒子 - 等离子体(金)、磁性(Fe2O3)、催化(钯)和发光(CdSe/Te@ZnS 和 CdSe@ZnS) - 可以以合理的方式纳入二元系统。我们还研究了纳米粒子特性(包括尺寸、形状、每个粒子的 DNA 数量和 DNA 灵活性)对异质系统相行为的影响,并证明组装材料可以具有新颖的光学和场响应特性。