Golla Murali, Jeon Hyunjin, Albert Shine K, Lee Hojun, Kang Seulki, Park Moon Jeong, Park So-Jung
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea.
Adv Sci (Weinh). 2025 Aug;12(32):e01491. doi: 10.1002/advs.202501491. Epub 2025 Jun 29.
A straightforward, one-step method is presented for DNA functionalization of iron oxide nanoparticles (IONP) using galloylated DNA through multidentate metal-phenol interactions. The DNA-modified IONPs exhibit excellent stability under diverse buffer conditions and display intriguing DNA binding properties, influenced by the superparamagnetic property of IONPs. The DNA denaturation behavior can be categorized into two regimes: the magnetic-dominant regime and the DNA-dominant regime. In the magnetic regime, where IONPs are assembled using relatively short DNA linkers, magnetic and DNA interactions jointly stabilize the assemblies, resulting in an unusually weak length dependence of DNA melting temperature. As the linker length increases, the system transitions into the DNA-dominant regime, where the magnetic effect diminishes, and the assemblies exhibit conventional DNA length-dependence. This study offers a simple and robust approach for DNA functionalization of IONPs, which can be extended to other metal compound nanoparticles, and highlights the potential of utilizing magnetic reinforcement to modulate DNA-based nanoparticle assembly.
本文提出了一种直接的一步法,通过多齿金属-酚相互作用,利用没食子酰化DNA对氧化铁纳米颗粒(IONP)进行DNA功能化。DNA修饰的IONP在不同缓冲条件下表现出优异的稳定性,并展现出有趣的DNA结合特性,这受到IONP超顺磁性的影响。DNA变性行为可分为两种情况:磁主导情况和DNA主导情况。在磁主导情况下,使用相对较短的DNA连接子组装IONP,磁性和DNA相互作用共同稳定组装体,导致DNA解链温度对长度的依赖性异常微弱。随着连接子长度增加,系统转变为DNA主导情况,其中磁效应减弱,组装体表现出传统的DNA长度依赖性。本研究为IONP的DNA功能化提供了一种简单而稳健的方法,该方法可扩展到其他金属化合物纳米颗粒,并突出了利用磁性增强来调节基于DNA的纳米颗粒组装的潜力。