Suppr超能文献

ubiJ,一个在巨噬细胞有氧生长和增殖中必需的新基因,参与大肠杆菌和鼠伤寒沙门氏菌 Typhimurium 辅酶 Q 的生物合成。

ubiJ, a new gene required for aerobic growth and proliferation in macrophage, is involved in coenzyme Q biosynthesis in Escherichia coli and Salmonella enterica serovar Typhimurium.

机构信息

Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France.

出版信息

J Bacteriol. 2014 Jan;196(1):70-9. doi: 10.1128/JB.01065-13. Epub 2013 Oct 18.

Abstract

Ubiquinone (coenzyme Q or Q8) is a redox active lipid which functions in the respiratory electron transport chain and plays a crucial role in energy-generating processes. In both Escherichia coli and Salmonella enterica serovar Typhimurium, the yigP gene is located between ubiE and ubiB, all three being likely to constitute an operon. In this work, we showed that the uncharacterized yigP gene was involved in Q8 biosynthesis in both strains, and we have renamed it ubiJ. Under aerobic conditions, an ubiJ mutant was found to be impaired for Q8 biosynthesis and for growth in rich medium but did not present any defect anaerobically. Surprisingly, the C-terminal 50 amino acids, predicted to interact with lipids, were sufficient to restore Q8 biosynthesis and growth of the ubiJ mutant. Salmonella ubiE and ubiB mutants were impaired in Q8 biosynthesis and in respiration using different electron acceptors. Moreover, ubiE, ubiJ, and ubiB mutants were all impaired for Salmonella intracellular proliferation in macrophages. Taken together, our data establish an important role for UbiJ in Q8 biosynthesis and reveal an unexpected link between Q8 and virulence. They also emphasize that Salmonella organisms in an intracellular lifestyle rely on aerobic respiration to survive and proliferate within macrophages.

摘要

泛醌(辅酶 Q 或 Q8)是一种氧化还原活性脂质,它在呼吸电子传递链中发挥作用,在产生能量的过程中起着至关重要的作用。在大肠杆菌和鼠伤寒沙门氏菌血清型 Typhimurium 中,yigP 基因位于 ubiE 和 ubiB 之间,这三个基因很可能构成一个操纵子。在这项工作中,我们表明,未被表征的 yigP 基因参与了这两种菌株中 Q8 的生物合成,我们将其重新命名为 ubiJ。在有氧条件下,ubiJ 突变体被发现 Q8 生物合成和在丰富培养基中生长受损,但在厌氧条件下没有任何缺陷。令人惊讶的是,预测与脂质相互作用的 C 端 50 个氨基酸足以恢复 ubiJ 突变体的 Q8 生物合成和生长。鼠伤寒沙门氏菌 ubiE 和 ubiB 突变体在 Q8 生物合成和使用不同电子受体的呼吸作用中受到损害。此外,ubiE、ubiJ 和 ubiB 突变体在巨噬细胞内增殖方面均受到损害。总之,我们的数据确立了 UbiJ 在 Q8 生物合成中的重要作用,并揭示了 Q8 与毒力之间的意外联系。它们还强调,在细胞内生活方式的沙门氏菌生物体依赖有氧呼吸在巨噬细胞内生存和增殖。

相似文献

3
Differential quantitative proteomics reveals the functional difference of two yigP locus products, UbiJ and EsrE.
J Basic Microbiol. 2019 Nov;59(11):1125-1133. doi: 10.1002/jobm.201900350. Epub 2019 Sep 25.
4
5
Biosynthesis and physiology of coenzyme Q in bacteria.
Biochim Biophys Acta. 2014 Jul;1837(7):1004-11. doi: 10.1016/j.bbabio.2014.01.015. Epub 2014 Jan 28.
9
FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s).
J Bacteriol. 2007 Mar;189(6):2262-73. doi: 10.1128/JB.00726-06. Epub 2007 Jan 12.
10
Coenzyme Q biosynthesis in the biopesticide Shenqinmycin-producing Pseudomonas aeruginosa strain M18.
J Ind Microbiol Biotechnol. 2019 Jul;46(7):1025-1038. doi: 10.1007/s10295-019-02179-1. Epub 2019 Apr 12.

引用本文的文献

1
Interplay of niche and respiratory network in shaping bacterial colonization.
J Biol Chem. 2025 Jan;301(1):108052. doi: 10.1016/j.jbc.2024.108052. Epub 2024 Dec 9.
2
Understanding coenzyme Q.
Physiol Rev. 2024 Oct 1;104(4):1533-1610. doi: 10.1152/physrev.00040.2023. Epub 2024 May 9.
3
Role of the ubiquinone-synthesizing UbiUVT pathway in adaptation to changing respiratory conditions.
mBio. 2023 Aug 31;14(4):e0329822. doi: 10.1128/mbio.03298-22. Epub 2023 Jun 7.
4
Rational Engineering of Non-Ubiquinone Containing for Enhanced Coenzyme Q Production.
Metabolites. 2022 May 11;12(5):428. doi: 10.3390/metabo12050428.
5
The Biosynthetic Pathway of Ubiquinone Contributes to Pathogenicity of Francisella novicida.
J Bacteriol. 2021 Nov 5;203(23):e0040021. doi: 10.1128/JB.00400-21. Epub 2021 Sep 20.
6
The EcoCyc Database in 2021.
Front Microbiol. 2021 Jul 28;12:711077. doi: 10.3389/fmicb.2021.711077. eCollection 2021.
7
Coenzyme Q Biosynthesis Established in the Non-Ubiquinone Containing by Metabolic Engineering.
Front Bioeng Biotechnol. 2021 Mar 30;9:650961. doi: 10.3389/fbioe.2021.650961. eCollection 2021.
8
Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses.
Curr Genet. 2021 Aug;67(4):573-582. doi: 10.1007/s00294-021-01178-z. Epub 2021 Mar 19.
10
The O-independent pathway of ubiquinone biosynthesis is essential for denitrification in .
J Biol Chem. 2020 Jul 3;295(27):9021-9032. doi: 10.1074/jbc.RA120.013748. Epub 2020 May 14.

本文引用的文献

1
ubiI, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation.
J Biol Chem. 2013 Jul 5;288(27):20085-92. doi: 10.1074/jbc.M113.480368. Epub 2013 May 24.
2
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic.
Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1048-85. doi: 10.1016/j.bbabio.2013.01.011. Epub 2013 Jan 31.
4
Esre: a novel essential non-coding RNA in Escherichia coli.
FEBS Lett. 2012 Apr 24;586(8):1195-200. doi: 10.1016/j.febslet.2012.03.010. Epub 2012 Mar 13.
5
The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1277-86. doi: 10.1073/pnas.1201061109. Epub 2012 Apr 25.
6
On the function of the various quinone species in Escherichia coli.
FEBS J. 2012 Sep;279(18):3364-73. doi: 10.1111/j.1742-4658.2012.08608.x. Epub 2012 May 30.
7
Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.
Metab Eng. 2011 Nov;13(6):704-12. doi: 10.1016/j.ymben.2011.09.006. Epub 2011 Oct 6.
9
Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants.
Biochim Biophys Acta. 2011 May;1811(5):348-60. doi: 10.1016/j.bbalip.2011.01.009. Epub 2011 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验