Kazemzadeh Katayoun, Hajj Chehade Mahmoud, Hourdoir Gautier, Brunet Camille Dorothée, Caspar Yvan, Loiseau Laurent, Barras Frederic, Pierrel Fabien, Pelosi Ludovic
CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France.
Laboratoire de Bactériologie-Hygiène Hospitalière, Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.
J Bacteriol. 2021 Nov 5;203(23):e0040021. doi: 10.1128/JB.00400-21. Epub 2021 Sep 20.
Francisella tularensis is the causative agent of tularemia. Because of its extreme infectivity and high mortality rate, this pathogen was classified as a biothreat agent. spp. are strict aerobes, and ubiquinone (UQ) has been previously identified in these bacteria. While the UQ biosynthetic pathways were extensively studied in Escherichia coli, allowing the identification of 15 Ubi proteins to date, little is known about spp. In this study, and using Francisella novicida as a surrogate organism, we first identified ubiquinone 8 (UQ) as the major quinone found in the membranes of this bacterium. Next, we characterized the UQ biosynthetic pathway in F. novicida using a combination of bioinformatics, genetics, and biochemical approaches. Our analysis disclosed the presence in of 10 putative Ubi proteins, and we confirmed 8 of them by heterologous complementation in E. coli. The UQ biosynthetic pathways from F. novicida and E. coli share similar patterns. However, differences were highlighted: the decarboxylase remains unidentified in spp., and homologs of the Ubi proteins involved in the O-independent UQ pathway are not present. This is in agreement with the strictly aerobic niche of this bacterium. Next, via two approaches, i.e., the use of an inhibitor (3-amino-4-hydroxybenzoic acid) and a transposon mutant, both of which strongly impair the synthesis of UQ, we demonstrated that UQ is essential for the growth of F. novicida in respiratory medium and contributes to its pathogenicity in Galleria mellonella used as an alternative animal model. Francisella tularensis is the causative bacterium of tularemia and is classified as a biothreat agent. Using multidisciplinary approaches, we investigated the ubiquinone (UQ) biosynthetic pathway that operates in F. novicida used as a surrogate. We show that UQ is the major quinone identified in the membranes of Francisella novicida. We identified a new competitive inhibitor that strongly decreased the biosynthesis of UQ. Our demonstration of the crucial roles of UQ for the respiratory metabolism of F. novicida and for the involvement in its pathogenicity in the Galleria mellonella model should stimulate the search for selective inhibitors of bacterial UQ biosynthesis.
土拉弗朗西斯菌是兔热病的病原体。由于其极强的传染性和高死亡率,这种病原体被列为生物威胁因子。弗朗西斯菌属为严格需氧菌,此前已在这些细菌中鉴定出泛醌(UQ)。虽然在大肠杆菌中对UQ生物合成途径进行了广泛研究,迄今已鉴定出15种泛醌蛋白,但对弗朗西斯菌属了解甚少。在本研究中,我们以新凶手弗朗西斯菌作为替代生物体,首先鉴定出泛醌8(UQ)是该细菌膜中发现的主要醌类。接下来,我们结合生物信息学、遗传学和生化方法,对新凶手弗朗西斯菌中的UQ生物合成途径进行了表征。我们的分析揭示了新凶手弗朗西斯菌中存在10种假定的泛醌蛋白,并且通过在大肠杆菌中的异源互补证实了其中8种。新凶手弗朗西斯菌和大肠杆菌的UQ生物合成途径具有相似模式。然而,也存在差异:弗朗西斯菌属中脱羧酶仍未鉴定出来,并且参与不依赖氧气的UQ途径的泛醌蛋白同源物不存在。这与该细菌严格的需氧生态位一致。接下来,通过两种方法,即使用抑制剂(3-氨基-4-羟基苯甲酸)和转座子突变体,二者均强烈损害UQ的合成,我们证明UQ对于新凶手弗朗西斯菌在呼吸培养基中的生长至关重要,并在作为替代动物模型的大蜡螟中对其致病性有贡献。土拉弗朗西斯菌是兔热病的致病菌,被列为生物威胁因子。我们采用多学科方法,研究了以新凶手弗朗西斯菌作为替代物时其泛醌(UQ)生物合成途径。我们表明UQ是在新凶手弗朗西斯菌膜中鉴定出的主要醌类。我们鉴定出一种新的竞争性抑制剂,它能强烈降低UQ的生物合成。我们证明UQ对新凶手弗朗西斯菌呼吸代谢以及在大蜡螟模型中参与其致病性的关键作用,应该会刺激对细菌UQ生物合成选择性抑制剂的寻找。