Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.
PLoS Biol. 2013 Oct;11(10):e1001679. doi: 10.1371/journal.pbio.1001679. Epub 2013 Oct 15.
Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins), regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3) and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively inhibiting translational initiation of mef2ca and other mRNAs, eIF4EBP3L reprograms the translational profile of muscle, enabling it to adjust to new environmental conditions.
肌肉纤维大小与活动有关,在衰老、卧床休息和恶病质中具有重要的临床意义,肌肉减弱会导致残疾、恢复时间延长和成本增加。不活动通过触发蛋白质降解导致肌肉消耗,并可能同时阻止蛋白质合成。在发育过程中,肌肉组织通过多种机制生长,包括现有纤维的肥大。与其他组织一样,TOR 途径通过抑制 eIF4EBPs(真核起始因子 4E 结合蛋白)来发挥关键作用,eIF4EBPs 是翻译起始的调节剂。在这里,我们在一种新型的斑马鱼肌肉失活动力学模型中测试了 TOR-eIF4EBP 的作用。失活触发了 eIF4EBP3L(eIF4EBP3 的斑马鱼同源物)的上调,并减少了肌球蛋白和肌动蛋白含量、肌原纤维生成和纤维生长。这些变化伴随着肌肉转录因子 Mef2c 的相对减少,相对于 Myod 和 Vinculin。多核糖体馏分显示 Mef2c 的减少是由于 mef2ca mRNA 的翻译减少。Mef2ca 功能的丧失减少了正常的肌肉生长,并减少了失活引起的生长减少。我们确定 eIF4EBP3L 是失活后 Mef2c 翻译和蛋白水平的关键调节剂;阻断 eIF4EBP3L 功能可增加 mef2ca mRNA 的翻译。这种阻断还可以防止失活引起的 mef2ca 翻译和 Mef2c 以及肌球蛋白重链蛋白水平的下降。相反,过表达活性 eIF4EBP3L 通过减少多核糖体中 mef2ca mRNA 的比例、Mef2c 和慢肌球蛋白重链的水平以及肌原纤维含量来模拟失活。不增加 eIF4EBP3L 而抑制 TOR 途径对肌原纤维生成和肌肉大小的影响较小。这些发现确定了 eIF4EBP3L 是 TOR 依赖性调节肌肉纤维大小对活动反应的关键调节剂。我们认为,通过选择性抑制 mef2ca 和其他 mRNA 的翻译起始,eIF4EBP3L 可以重新编程肌肉的翻译谱,使其能够适应新的环境条件。