Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130.
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2218951120. doi: 10.1073/pnas.2218951120. Epub 2023 Jun 12.
We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular alga is widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.
我们报告了一种无标记的声学微流控方法,可以在不限制其旋转自由度的情况下将单个纤毛驱动的游泳细胞限制在空间中。我们的平台集成了表面声波(SAW)驱动器和体声波(BAW)捕获阵列,可实现具有高空间分辨率和捕获力的多路复用分析,这些捕获力足以固定单个微游泳者。混合 BAW/SAW 声镊采用高效模式转换,在补偿与微流控芯片接触的浸没油的寄生系统损耗的同时,实现亚微米图像分辨率。我们使用该平台来量化野生型双纤毛细胞的纤毛和细胞体运动,研究环境变量(如温度和粘度)对纤毛跳动、同步和三维螺旋游动的影响。我们确认并扩展了对这些现象的现有理解,例如确定增加粘度会促进异步跳动。运动纤毛是推动微生物或直接引导流体和颗粒流的亚细胞细胞器。因此,纤毛对细胞的生存和人类健康至关重要。单细胞藻类被广泛用于研究纤毛跳动和协调的机制。然而,自由游动的细胞很难用足够的分辨率进行成像以捕获纤毛运动,因此需要在实验过程中固定细胞体。与使用微管或可能改变细胞并影响其行为的磁性、电气和光学捕获相比,声学限制是一种很有吸引力的替代方法。除了建立我们研究微游泳者的方法外,我们还展示了通过快速声学定位对细胞进行机械扰动的独特能力。