Suppr超能文献

中等光适应在……中诱导振荡趋光性转换和模式形成。 (原文句子不完整,缺少具体对象)

Intermediate light adaptation induces oscillatory phototaxis switching and pattern formation in .

作者信息

Wang Zhao, Tsang Alan C H

机构信息

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.

出版信息

Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2425369122. doi: 10.1073/pnas.2425369122. Epub 2025 Jun 12.

Abstract

Biological microswimmers exhibit intricate taxis behaviors in response to environmental stimuli and swim in complex trajectories to navigate their environment. How microswimmers respond to stimulus instantaneously, and how adaptation to stimulus influences their long-term behavioral changes, remains largely unclear. Here, we report an oscillatory phototaxis observed in at intermediate light intensities, where cells swim back-and-forth under a constant, unidirectional light stimulus due to alternation between positive and negative phototaxis. The phototaxis switching can be captured by the change in phase relationship between eyespot and helical swimming. Oscillatory phototaxis of individual cells leads to a global pattern of millimeter-scale propagating density bands that persists for [Formula: see text]30 min. High-speed imaging and long-time tracking experiments at single-cell level verify a unified phototaxis mechanism that couples light detection, light adaptation, flagella responses, and behavioral switching. By experimentally tracking steady swimming and transient turning states, we verify that phototaxis transition is achieved via the modulation of flagella waveforms and flagella phase difference, which can be captured by a hydrodynamic model accounting for photoresponses. Adaptation acts effectively as an oscillator damper to mediate multipurpose tasking across multiple system levels (subcellular flagella beats, oscillatory phototaxis, colonial pattern formation) and timescales (from milliseconds to over 30 min). This adaptive phototaxis mechanism provides a comprehensive understanding of how microswimmers achieve complex behavioral changes across multiple temporal scales with a single sensor-actuator circuit featuring relatively simple adaptive feedback responses.

摘要

生物微游动器会对环境刺激做出复杂的趋化行为,并沿复杂轨迹游动以在其环境中导航。微游动器如何瞬间对刺激做出反应,以及对刺激的适应如何影响其长期行为变化,在很大程度上仍不清楚。在此,我们报告了在中等光强度下观察到的一种振荡趋光性,在这种情况下,细胞在恒定的单向光刺激下前后游动,这是由于正向和负向趋光性之间的交替所致。趋光性的转换可以通过眼点与螺旋游动之间相位关系的变化来捕捉。单个细胞的振荡趋光性会导致毫米级传播密度带的全局模式持续30分钟。单细胞水平的高速成像和长时间跟踪实验验证了一种统一的趋光性机制,该机制将光检测、光适应、鞭毛反应和行为转换耦合在一起。通过实验跟踪稳定游动和瞬态转向状态,我们验证了趋光性转变是通过调节鞭毛波形和鞭毛相位差来实现的,这可以由一个考虑光响应的流体动力学模型来捕捉。适应有效地充当振荡器阻尼器,以介导跨多个系统层面(亚细胞鞭毛摆动、振荡趋光性、群体模式形成)和时间尺度(从毫秒到超过30分钟)的多用途任务。这种自适应趋光性机制全面解释了微游动器如何利用具有相对简单自适应反馈响应的单个传感器 - 执行器电路在多个时间尺度上实现复杂的行为变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b608/12184369/637a0400b343/pnas.2425369122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验