Suppr超能文献

炎症增强 SCAP 糖基化诱导巨噬细胞泡沫细胞形成。

Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

机构信息

Centre for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, P.R. China ; Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China ; John Moorhead Research Laboratory, Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, London, United Kingdom.

出版信息

PLoS One. 2013 Oct 16;8(10):e75650. doi: 10.1371/journal.pone.0075650. eCollection 2013.

Abstract

Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs) Cleavage-Activating Protein (SCAP) glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR) feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER) to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form). As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam cell formation.

摘要

炎症应激通过破坏巨噬细胞中 LDL 受体的反馈调节促进泡沫细胞形成。固醇调节元件结合蛋白(SREBPs)裂解激活蛋白(SCAP)糖基化在调节 LDL 受体和 3-羟-3-甲基戊二酰辅酶 A 还原酶(HMGCoAR)反馈调节中起着至关重要的作用。本研究旨在探讨炎症应激是否通过影响 THP-1 巨噬细胞中 SCAP 糖基化来破坏 LDL 受体和 HMGCoAR 反馈调节。通过油红 O 染色和定量测定评估细胞内胆固醇含量。使用实时定量 RT-PCR 和 Western blot 检测控制胆固醇稳态的分子的表达。通过共聚焦显微镜检测 SCAP 从内质网(ER)到高尔基体的易位。我们证明,暴露于炎症细胞因子会增加 THP-1 巨噬细胞中的脂质积累,即使在存在高浓度 LDL 的情况下,SCAP 的表达也会增加。这些炎症细胞因子还通过增强高尔基体甘露糖苷酶 II 的表达来延长 SCAP 的半衰期,从而增强 SCAP 的糖基化。这可能增强 SCAP 在 ER 和高尔基体之间的易位和循环,护送更多的 SREBP2 从 ER 到高尔基体进行蛋白水解切割激活,如 SREBP2 的 N 端(活性形式)增加所证明的那样。结果,LDL 受体和 HMGCoAR 的表达上调。有趣的是,这些作用可以被高尔基体甘露糖苷酶抑制剂阻断。我们的结果表明,炎症增加了天然 LDL 的摄取和内源性胆固醇从头合成,从而通过增加巨噬细胞中 SCAP 的转录和蛋白糖基化导致泡沫细胞形成。这些数据表明,高尔基体加工酶抑制剂可能在预防动脉粥样硬化泡沫细胞形成方面具有潜在的血管保护作用。

相似文献

1
Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.
PLoS One. 2013 Oct 16;8(10):e75650. doi: 10.1371/journal.pone.0075650. eCollection 2013.
2
Advanced glycation end products (AGEs) increase human mesangial foam cell formation by increasing Golgi SCAP glycosylation in vitro.
Am J Physiol Renal Physiol. 2011 Jul;301(1):F236-43. doi: 10.1152/ajprenal.00646.2010. Epub 2011 Apr 20.
3
Cross-talk between TLR4-MyD88-NF-κB and SCAP-SREBP2 pathways mediates macrophage foam cell formation.
Am J Physiol Heart Circ Physiol. 2013 Mar 15;304(6):H874-84. doi: 10.1152/ajpheart.00096.2012. Epub 2013 Jan 18.
5
Golgi a-mannosidase II mediates the formation of vascular smooth muscle foam cells under inflammatory stress.
Folia Histochem Cytobiol. 2021;59(2):134-143. doi: 10.5603/FHC.a2021.0015. Epub 2021 Jun 21.
7
Activation of mTOR modulates SREBP-2 to induce foam cell formation through increased retinoblastoma protein phosphorylation.
Cardiovasc Res. 2013 Dec 1;100(3):450-60. doi: 10.1093/cvr/cvt203. Epub 2013 Sep 25.
8
Inflammatory stress increases unmodified LDL uptake via LDL receptor: an alternative pathway for macrophage foam-cell formation.
Inflamm Res. 2009 Nov;58(11):809-18. doi: 10.1007/s00011-009-0052-4. Epub 2009 Jun 17.
9
Dysfunction of cholesterol sensor SCAP promotes inflammation activation in THP-1 macrophages.
Exp Cell Res. 2018 Jun 15;367(2):162-169. doi: 10.1016/j.yexcr.2018.03.032. Epub 2018 Mar 27.

引用本文的文献

2
The cellular function of SCAP in metabolic signaling.
Exp Mol Med. 2020 May;52(5):724-729. doi: 10.1038/s12276-020-0430-0. Epub 2020 May 8.
3
Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities.
Int J Mol Sci. 2020 Apr 10;21(7):2632. doi: 10.3390/ijms21072632.
4
Digenic mutations on and predispose to premature myocardial infarction.
Oncotarget. 2017 Oct 24;8(59):100141-100149. doi: 10.18632/oncotarget.22045. eCollection 2017 Nov 21.
5
GP73 regulates Hepatic Steatosis by enhancing SCAP-SREBPs interaction.
Sci Rep. 2017 Nov 2;7(1):14932. doi: 10.1038/s41598-017-06500-9.
8
Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages.
PLoS One. 2014 Oct 17;9(10):e109722. doi: 10.1371/journal.pone.0109722. eCollection 2014.

本文引用的文献

1
Cross-talk between TLR4-MyD88-NF-κB and SCAP-SREBP2 pathways mediates macrophage foam cell formation.
Am J Physiol Heart Circ Physiol. 2013 Mar 15;304(6):H874-84. doi: 10.1152/ajpheart.00096.2012. Epub 2013 Jan 18.
2
Inflammation in atherosclerosis.
Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2045-51. doi: 10.1161/ATVBAHA.108.179705.
3
Infection, inflammation and host carbohydrates: a Glyco-Evasion Hypothesis.
Glycobiology. 2012 Aug;22(8):1019-30. doi: 10.1093/glycob/cws070. Epub 2012 Apr 5.
4
Role of macrophage scavenger receptors in atherosclerosis.
Immunobiology. 2012 May;217(5):492-502. doi: 10.1016/j.imbio.2012.02.015. Epub 2012 Mar 2.
5
Accelerated atherosclerosis in patients with SLE--mechanisms and management.
Nat Rev Rheumatol. 2012 Feb 14;8(4):214-23. doi: 10.1038/nrrheum.2012.14.
6
Protective and pathogenic functions of macrophage subsets.
Nat Rev Immunol. 2011 Oct 14;11(11):723-37. doi: 10.1038/nri3073.
7
Novel inflammatory mechanisms of accelerated atherosclerosis in kidney disease.
Kidney Int. 2011 Sep;80(5):453-63. doi: 10.1038/ki.2011.178. Epub 2011 Jun 22.
8
Progress and challenges in translating the biology of atherosclerosis.
Nature. 2011 May 19;473(7347):317-25. doi: 10.1038/nature10146.
9
Advanced glycation end products (AGEs) increase human mesangial foam cell formation by increasing Golgi SCAP glycosylation in vitro.
Am J Physiol Renal Physiol. 2011 Jul;301(1):F236-43. doi: 10.1152/ajprenal.00646.2010. Epub 2011 Apr 20.
10
Glycomics hits the big time.
Cell. 2010 Nov 24;143(5):672-6. doi: 10.1016/j.cell.2010.11.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验