Suppr超能文献

一种具有解剖学准确性的新型人类肾集合系统模型,用于在透视引导经皮肾镜取石术入路培训。

A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access.

机构信息

Department of Urology, Nuffield Department of Surgical Sciences, Oxford University , Oxford, United Kingdom .

出版信息

J Endourol. 2014 Mar;28(3):360-3. doi: 10.1089/end.2013.0616. Epub 2013 Dec 26.

Abstract

BACKGROUND AND PURPOSE

Obtaining renal access is one of the most important and complex steps in learning percutaneous nephrolithotomy (PCNL). Ideally, this skill should be practiced outside the operating room. There is a need for anatomically accurate and cheap models for simulated training. The objective was to develop a cost-effective, anatomically accurate, nonbiologic training model for simulated PCNL access under fluoroscopic guidance.

METHODS

Collecting systems from routine computed tomography urograms were extracted and reformatted using specialized software. These images were printed in a water-soluble plastic on a three-dimensional (3D) printer to create biomodels. These models were embedded in silicone and then the models were dissolved in water to leave a hollow collecting system within a silicone model. These PCNL models were filled with contrast medium and sealed. A layer of dense foam acted as a spacer to replicate the tissues between skin and kidney.

RESULTS

3D printed models of human collecting systems are a useful adjunct in planning PCNL access. The PCNL access training model is relatively low cost and reproduces the anatomy of the renal collecting system faithfully. A range of models reflecting the variety and complexity of human collecting systems can be reproduced. The fluoroscopic triangulation process needed to target the calix of choice can be practiced successfully in this model.

CONCLUSIONS

This silicone PCNL training model accurately replicates the anatomic architecture and orientation of the human renal collecting system. It provides a safe, clean, and effective model for training in accurate fluoroscopy-guided PCNL access.

摘要

背景与目的

获取肾脏通道是学习经皮肾镜碎石术(PCNL)过程中最重要和最复杂的步骤之一。理想情况下,这项技能应该在手术室之外进行练习。我们需要一种解剖学上准确且价格低廉的模型来进行模拟训练。本研究旨在开发一种具有成本效益、解剖学准确、非生物的训练模型,用于在透视引导下模拟 PCNL 通道建立。

方法

使用专门的软件提取和重新格式化常规 CT 尿路造影的收集系统图像。这些图像被打印在水溶性塑料上,然后使用三维(3D)打印机进行打印,以创建生物模型。这些模型被嵌入硅胶中,然后将模型溶解在水中,在硅胶模型内留下一个空心收集系统。这些 PCNL 模型充满造影剂并密封。一层致密的泡沫充当间隔物,模拟皮肤和肾脏之间的组织。

结果

3D 打印的人类收集系统模型是 PCNL 通道规划的有用辅助工具。PCNL 通道建立训练模型成本相对较低,能够忠实地复制肾脏收集系统的解剖结构。可以复制反映各种人类收集系统复杂性的模型。可以成功地在这个模型中练习选择目标肾盏所需的透视三角测量过程。

结论

这种硅胶 PCNL 训练模型准确地复制了人类肾脏收集系统的解剖结构和方向。它为在透视引导下准确进行 PCNL 通道建立的培训提供了一种安全、清洁和有效的模型。

相似文献

6
Lower-pole fluoroscopy-guided percutaneous renal access: which calix is posterior?
J Endourol. 2009 Oct;23(10):1621-5. doi: 10.1089/end.2009.1527.

引用本文的文献

1
Fresh Frozen Cadavers as a Novel Training Model for Percutaneous Nephrolithotomy (PCNL).
Res Rep Urol. 2025 May 17;17:167-173. doi: 10.2147/RRU.S515072. eCollection 2025.
4
Classification and clinical significance of the posterior group of renal calyces.
Medicine (Baltimore). 2023 Aug 4;102(31):e34443. doi: 10.1097/MD.0000000000034443.
5
Additive Manufacturing of 3D Anatomical Models-Review of Processes, Materials and Applications.
Materials (Basel). 2023 Jan 16;16(2):880. doi: 10.3390/ma16020880.
7
Development and Validation of a Novel Skills Training Model for PCNL, an ESUT project.
Acta Biomed. 2022 Aug 31;93(4):e2022254. doi: 10.23750/abm.v93i4.11821.
8
Fabrication of Low-cost Realistic Three-dimensional Static Kidney Phantom for Ultrasound-guided Biopsy Applications.
J Med Ultrasound. 2021 Dec 27;30(1):36-40. doi: 10.4103/JMU.JMU_181_20. eCollection 2022 Jan-Mar.
10
A review of simulation training and new 3D computer-generated synthetic organs for robotic surgery education.
J Robot Surg. 2022 Aug;16(4):749-763. doi: 10.1007/s11701-021-01302-8. Epub 2021 Sep 3.

本文引用的文献

1
Quantification of airflow into the maxillary sinuses before and after functional endoscopic sinus surgery.
Int Forum Allergy Rhinol. 2013 Oct;3(10):834-40. doi: 10.1002/alr.21203. Epub 2013 Sep 5.
2
Collecting system percutaneous access using real-time tracking sensors: first pig model in vivo experience.
J Urol. 2013 Nov;190(5):1932-7. doi: 10.1016/j.juro.2013.05.042. Epub 2013 May 25.
3
Mobile augmented reality for computer-assisted percutaneous nephrolithotomy.
Int J Comput Assist Radiol Surg. 2013 Jul;8(4):663-75. doi: 10.1007/s11548-013-0828-4. Epub 2013 Mar 23.
5
Training in percutaneous nephrolithotomy.
Curr Opin Urol. 2013 Mar;23(2):147-51. doi: 10.1097/MOU.0b013e32835d4e37.
7
Supine vs prone percutaneous nephrolithotomy: an anaesthetist's view.
BJU Int. 2011 Aug;108(3):306-8. doi: 10.1111/j.1464-410X.2011.10488.x.
9
Update on training models in endourology: a qualitative systematic review of the literature between January 1980 and April 2008.
Eur Urol. 2008 Dec;54(6):1247-61. doi: 10.1016/j.eururo.2008.06.036. Epub 2008 Jun 25.
10
Training in percutaneous nephrolithotomy--a critical review.
Eur Urol. 2008 Nov;54(5):994-1001. doi: 10.1016/j.eururo.2008.03.052. Epub 2008 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验