Biomedical Signal Processing Laboratory, Portland State University, Portland, OR 97201, USA.
Physiol Meas. 2013 Nov;34(11):1467-82. doi: 10.1088/0967-3334/34/11/1467. Epub 2013 Oct 22.
We introduce an implementation of a novel spline framework for parametrically representing electrocardiogram (ECG) waveforms. This implementation enables a flexible means to study ECG structure in large databases. Our algorithm allows researchers to identify key points in the waveform and optimally locate them in long-term recordings with minimal manual effort, thereby permitting analysis of trends in the points themselves or in metrics derived from their locations. In the work described here we estimate the location of a number of commonly-used characteristic points of the ECG signal, defined as the onsets, peaks, and offsets of the P, QRS, T, and R' waves. The algorithm applies Bayesian optimization to a linear spline representation of the ECG waveform. The location of the knots-which are the endpoints of the piecewise linear segments used in the spline representation of the signal-serve as the estimate of the waveform's characteristic points. We obtained prior information of knot times, amplitudes, and curvature from a large manually-annotated training dataset and used the priors to optimize a Bayesian figure of merit based on estimated knot locations. In cases where morphologies vary or are subject to noise, the algorithm relies more heavily on the estimated priors for its estimate of knot locations. We compared optimized knot locations from our algorithm to two sets of manual annotations on a prospective test data set comprising 200 beats from 20 subjects not in the training set. Mean errors of characteristic point locations were less than four milliseconds, and standard deviations of errors compared favorably against reference values. This framework can easily be adapted to include additional points of interest in the ECG signal or for other biomedical detection problems on quasi-periodic signals.
我们介绍了一种新的样条框架,用于对心电图(ECG)波形进行参数化表示。这种实现为在大型数据库中研究 ECG 结构提供了一种灵活的方法。我们的算法允许研究人员识别波形中的关键点,并在长期记录中以最小的人工努力最优地定位它们,从而可以分析这些点本身的趋势或从其位置得出的指标的趋势。在本文所描述的工作中,我们估计了 ECG 信号的一些常用特征点的位置,这些特征点定义为 P、QRS、T 和 R'波的起始、峰值和结束。该算法将贝叶斯优化应用于 ECG 波形的线性样条表示。这些节点的位置(即信号的分段线性段的端点)用作波形特征点的估计。我们从一个大型手动注释的训练数据集获得了节点时间、幅度和曲率的先验信息,并使用这些先验信息来优化基于估计节点位置的贝叶斯度量。在形态变化或受到噪声影响的情况下,算法更依赖于估计的先验信息来估计节点位置。我们将来自我们算法的优化节点位置与两组手动注释进行了比较,这些注释是来自不在训练集中的 20 名受试者的 200 个心动周期的前瞻性测试数据集。特征点位置的平均误差小于 4 毫秒,误差的标准差与参考值相比表现良好。该框架可以轻松适应 ECG 信号中的其他感兴趣点或其他准周期性信号的生物医学检测问题。