From the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242.
J Biol Chem. 2013 Dec 13;288(50):35961-8. doi: 10.1074/jbc.M113.507632. Epub 2013 Oct 24.
The hydride transfer reaction catalyzed by dihydrofolate reductase (DHFR) is a model for examining how protein dynamics contribute to enzymatic function. The relationship between functional motions and enzyme evolution has attracted significant attention. Recent studies on N23PP Escherichia coli DHFR (ecDHFR) mutant, designed to resemble parts of the human enzyme, indicated a reduced single turnover rate. NMR relaxation dispersion experiments with that enzyme showed rigidification of millisecond Met-20 loop motions (Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., Benkovic, S. J., and Wright, P. E. (2011) Science 332, 234-238). A more recent study of this mutant, however, indicated that fast motions along the reaction coordinate are actually more dispersed than for wild-type ecDHFR (WT). Furthermore, a double mutant (N23PP/G51PEKN) that better mimics the human enzyme seems to restore both the single turnover rates and narrow distribution of fast dynamics (Liu, C. T., Hanoian, P., French, T. H., Hammes-Schiffer, S., and Benkovic, S. J. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 10159-11064). Here, we measured intrinsic kinetic isotope effects for both N23PP and N23PP/G51PEKN double mutant DHFRs over a temperature range. The findings indicate that although the C-H→C transfer and dynamics along the reaction coordinate are impaired in the altered N23PP mutant, both seem to be restored in the N23PP/G51PEKN double mutant. This indicates that the evolution of G51PEKN, although remote from the Met-20 loop, alleviated the loop rigidification that would have been caused by N23PP, enabling WT-like H-tunneling. The correlation between the calculated dynamics, the nature of C-H→C transfer, and a phylogenetic analysis of DHFR sequences are consistent with evolutionary preservation of the protein dynamics to enable H-tunneling from well reorganized active sites.
二氢叶酸还原酶 (DHFR) 催化的氢化物转移反应是研究蛋白质动力学如何促进酶功能的模型。功能运动与酶进化之间的关系引起了人们的极大关注。最近对 N23PP 大肠杆菌 DHFR (ecDHFR) 突变体的研究表明,该突变体的单轮反应速率降低。该酶的 NMR 弛豫分散实验表明,毫秒级 Met-20 环运动的僵化 (Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., Benkovic, S. J., and Wright, P. E. (2011) Science 332, 234-238)。然而,对该突变体的一项最新研究表明,与野生型 ecDHFR (WT) 相比,沿反应坐标的快速运动实际上更加分散。此外,一种更好地模拟人酶的双突变体 (N23PP/G51PEKN) 似乎恢复了单轮反应速率和快速动力学的窄分布 (Liu, C. T., Hanoian, P., French, T. H., Hammes-Schiffer, S., and Benkovic, S. J. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 10159-11064)。在这里,我们在一定温度范围内测量了 N23PP 和 N23PP/G51PEKN 双突变 DHFR 的固有动力学同位素效应。研究结果表明,尽管 C-H→C 转移和沿反应坐标的动力学在改变的 N23PP 突变体中受到损害,但在 N23PP/G51PEKN 双突变体中似乎都得到了恢复。这表明,尽管 G51PEKN 远离 Met-20 环,但它缓解了 N23PP 引起的环僵化,从而实现了类似 WT 的 H-隧穿。计算动力学、C-H→C 转移的性质以及 DHFR 序列的系统发育分析之间的相关性表明,蛋白质动力学的进化保存是为了从组织良好的活性部位实现 H-隧穿。