Mhashal Anil R, Major Dan Thomas
Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
J Phys Chem B. 2021 Feb 11;125(5):1369-1377. doi: 10.1021/acs.jpcb.0c10318. Epub 2021 Feb 1.
Calculation of temperature-dependent kinetic isotope effects (KIE) in enzymes presents a significant theoretical challenge. Additionally, it is not trivial to identify enzymes with available experimental accurate intrinsic KIEs in a range of temperatures. In the current work, we present a theoretical study of KIEs in the primitive R67 dihydrofolate reductase (DHFR) enzyme and compare with experimental work. The advantage of R67 DHFR is its significantly lower kinetic complexity compared to more evolved DHFR isoforms. We employ mass-perturbation-based path-integral simulations in conjunction with umbrella sampling and a hybrid quantum mechanics-molecular mechanics Hamiltonian. We obtain temperature-dependent KIEs in good agreement with experiments and ascribe the temperature-dependent KIEs primarily to zero-point energy effects. The active site in the primitive enzyme is found to be poorly preorganized, which allows excessive water access to the active site and results in loosely bound reacting ligands.
计算酶中温度依赖性动力学同位素效应(KIE)面临重大的理论挑战。此外,在一系列温度下识别具有可用实验准确本征KIE的酶并非易事。在当前工作中,我们对原始R67二氢叶酸还原酶(DHFR)中的KIE进行了理论研究,并与实验工作进行了比较。R67 DHFR的优势在于与进化程度更高的DHFR同工型相比,其动力学复杂性显著更低。我们采用基于质量微扰的路径积分模拟,结合伞形采样和量子力学-分子力学混合哈密顿量。我们获得了与实验结果高度一致的温度依赖性KIE,并将温度依赖性KIE主要归因于零点能效应。发现原始酶中的活性位点预组织性较差,这使得过多的水能够进入活性位点,并导致反应配体结合松散。