DiCarlo James E, Conley Andrew J, Penttilä Merja, Jäntti Jussi, Wang Harris H, Church George M
Department of Genetics, Harvard Medical School , Boston, Massachusetts 02115, United States.
ACS Synth Biol. 2013 Dec 20;2(12):741-9. doi: 10.1021/sb400117c. Epub 2013 Nov 18.
High-frequency oligonucleotide-directed recombination engineering (recombineering) has enabled rapid modification of several prokaryotic genomes to date. Here, we present a method for oligonucleotide-mediated recombineering in the model eukaryote and industrial production host Saccharomyces cerevisiae , which we call yeast oligo-mediated genome engineering (YOGE). Through a combination of overexpression and knockouts of relevant genes and optimization of transformation and oligonucleotide designs, we achieve high gene-modification frequencies at levels that only require screening of dozens of cells. We demonstrate the robustness of our approach in three divergent yeast strains, including those involved in industrial production of biobased chemicals. Furthermore, YOGE can be iteratively executed via cycling to generate genomic libraries up to 10 (5) individuals at each round for diversity generation. YOGE cycling alone or in combination with phenotypic selections or endonuclease-based negative genotypic selections can be used to generate modified alleles easily in yeast populations with high frequencies.
到目前为止,高频寡核苷酸定向重组工程(重组工程)已能够对几种原核生物基因组进行快速修饰。在此,我们提出了一种在模式真核生物和工业生产宿主酿酒酵母中进行寡核苷酸介导的重组工程的方法,我们将其称为酵母寡核苷酸介导的基因组工程(YOGE)。通过相关基因的过表达和敲除以及转化和寡核苷酸设计的优化相结合,我们实现了高基因修饰频率,达到了仅需筛选几十个细胞的水平。我们在三种不同的酵母菌株中证明了我们方法的稳健性,包括那些参与生物基化学品工业生产的菌株。此外,YOGE可以通过循环迭代执行,以在每一轮中生成多达10⁵个个体的基因组文库以产生多样性。单独的YOGE循环或与表型选择或基于核酸内切酶的阴性基因型选择相结合,可用于在酵母群体中轻松地高频产生修饰等位基因。