Suppr超能文献

酵母寡核苷酸介导的基因组工程(YOGE)。

Yeast oligo-mediated genome engineering (YOGE).

作者信息

DiCarlo James E, Conley Andrew J, Penttilä Merja, Jäntti Jussi, Wang Harris H, Church George M

机构信息

Department of Genetics, Harvard Medical School , Boston, Massachusetts 02115, United States.

出版信息

ACS Synth Biol. 2013 Dec 20;2(12):741-9. doi: 10.1021/sb400117c. Epub 2013 Nov 18.

Abstract

High-frequency oligonucleotide-directed recombination engineering (recombineering) has enabled rapid modification of several prokaryotic genomes to date. Here, we present a method for oligonucleotide-mediated recombineering in the model eukaryote and industrial production host Saccharomyces cerevisiae , which we call yeast oligo-mediated genome engineering (YOGE). Through a combination of overexpression and knockouts of relevant genes and optimization of transformation and oligonucleotide designs, we achieve high gene-modification frequencies at levels that only require screening of dozens of cells. We demonstrate the robustness of our approach in three divergent yeast strains, including those involved in industrial production of biobased chemicals. Furthermore, YOGE can be iteratively executed via cycling to generate genomic libraries up to 10 (5) individuals at each round for diversity generation. YOGE cycling alone or in combination with phenotypic selections or endonuclease-based negative genotypic selections can be used to generate modified alleles easily in yeast populations with high frequencies.

摘要

到目前为止,高频寡核苷酸定向重组工程(重组工程)已能够对几种原核生物基因组进行快速修饰。在此,我们提出了一种在模式真核生物和工业生产宿主酿酒酵母中进行寡核苷酸介导的重组工程的方法,我们将其称为酵母寡核苷酸介导的基因组工程(YOGE)。通过相关基因的过表达和敲除以及转化和寡核苷酸设计的优化相结合,我们实现了高基因修饰频率,达到了仅需筛选几十个细胞的水平。我们在三种不同的酵母菌株中证明了我们方法的稳健性,包括那些参与生物基化学品工业生产的菌株。此外,YOGE可以通过循环迭代执行,以在每一轮中生成多达10⁵个个体的基因组文库以产生多样性。单独的YOGE循环或与表型选择或基于核酸内切酶的阴性基因型选择相结合,可用于在酵母群体中轻松地高频产生修饰等位基因。

相似文献

1
Yeast oligo-mediated genome engineering (YOGE).
ACS Synth Biol. 2013 Dec 20;2(12):741-9. doi: 10.1021/sb400117c. Epub 2013 Nov 18.
2
Oligonucleotide recombination: a hidden treasure.
Bioeng Bugs. 2010 Jul-Aug;1(4):263-6. doi: 10.4161/bbug.1.4.12098. Epub 2010 May 19.
3
Automated multiplex genome-scale engineering in yeast.
Nat Commun. 2017 May 4;8:15187. doi: 10.1038/ncomms15187.
5
Gene and genome construction in yeast.
Curr Protoc Mol Biol. 2011 Apr;Chapter 3:Unit3.22. doi: 10.1002/0471142727.mb0322s94.
6
Genetic engineering of industrial strains of Saccharomyces cerevisiae.
Methods Mol Biol. 2012;824:451-65. doi: 10.1007/978-1-61779-433-9_24.
8
MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W408-15. doi: 10.1093/nar/gku428. Epub 2014 May 16.
9
Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae.
Biotechnol Lett. 2006 Apr;28(8):571-80. doi: 10.1007/s10529-006-0015-6.

引用本文的文献

1
Synthetic evolution of for biomanufacturing: Approaches and applications.
mLife. 2025 Feb 23;4(1):1-16. doi: 10.1002/mlf2.12167. eCollection 2025 Feb.
2
The design and engineering of synthetic genomes.
Nat Rev Genet. 2025 May;26(5):298-319. doi: 10.1038/s41576-024-00786-y. Epub 2024 Nov 6.
3
Simultaneous multi-site editing of individual genomes using retron arrays.
Nat Chem Biol. 2024 Nov;20(11):1482-1492. doi: 10.1038/s41589-024-01665-7. Epub 2024 Jul 9.
5
A High-Throughput Colocalization Pipeline for Quantification of Mitochondrial Targeting across Different Protein Types.
ACS Synth Biol. 2023 Aug 18;12(8):2498-2504. doi: 10.1021/acssynbio.3c00349. Epub 2023 Jul 28.
6
A Cas3-base editing tool for targetable in vivo mutagenesis.
Nat Commun. 2023 Jun 9;14(1):3389. doi: 10.1038/s41467-023-39087-z.
7
Fast and efficient template-mediated synthesis of genetic variants.
Nat Methods. 2023 Jun;20(6):841-848. doi: 10.1038/s41592-023-01868-1. Epub 2023 May 1.
9
Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering.
Microorganisms. 2022 Nov 23;10(12):2320. doi: 10.3390/microorganisms10122320.
10
Recombineering in Non-Model Bacteria.
Curr Protoc. 2022 Dec;2(12):e605. doi: 10.1002/cpz1.605.

本文引用的文献

1
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
Nucleic Acids Res. 2013 Apr;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub 2013 Mar 4.
2
Transformation with oligonucleotides creating clustered changes in the yeast genome.
PLoS One. 2012;7(8):e42905. doi: 10.1371/journal.pone.0042905. Epub 2012 Aug 14.
4
Genome-scale promoter engineering by coselection MAGE.
Nat Methods. 2012 Jun;9(6):591-3. doi: 10.1038/nmeth.1971. Epub 2012 Apr 8.
6
High efficiency recombineering in lactic acid bacteria.
Nucleic Acids Res. 2012 May;40(10):e76. doi: 10.1093/nar/gks147. Epub 2012 Feb 10.
8
Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion.
Nucleic Acids Res. 2011 Sep 1;39(16):7336-47. doi: 10.1093/nar/gkr183. Epub 2011 May 23.
9
Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides.
Nucleic Acids Res. 2009 Nov;37(20):6984-90. doi: 10.1093/nar/gkp687. Epub 2009 Sep 10.
10
Programming cells by multiplex genome engineering and accelerated evolution.
Nature. 2009 Aug 13;460(7257):894-898. doi: 10.1038/nature08187. Epub 2009 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验