Wang Harris H, Huang Po-Yi, Xu George, Haas Wilhelm, Marblestone Adam, Li Jun, Gygi Steven P, Forster Anthony C, Jewett Michael C, Church George M
ACS Synth Biol. 2012 Feb 17;1(2):43-52. doi: 10.1021/sb3000029.
Protein pathways are dynamic and highly coordinated spatially and temporally, capable of performing a diverse range of complex chemistries and enzymatic reactions with precision and at high efficiency. Biotechnology aims to harvest these natural systems to construct more advanced in vitro reactions, capable of new chemistries and operating at high yield. Here, we present an efficient Multiplex Automated Genome Engineering (MAGE) strategy to simultaneously modify and co-purify large protein complexes and pathways from the model organism Escherichia coli to reconstitute functional synthetic proteomes in vitro. By application of over 110 MAGE cycles, we successfully inserted hexa-histidine sequences into 38 essential genes in vivo that encode for the entire translation machinery. Streamlined co-purification and reconstitution of the translation protein complex enabled protein synthesis in vitro. Our approach can be applied to a growing area of applications in in vitro one-pot multienzyme catalysis (MEC) to manipulate or enhance in vitro pathways such as natural product or carbohydrate biosynthesis.
蛋白质通路是动态的,在空间和时间上高度协调,能够精确且高效地执行各种复杂的化学反应和酶促反应。生物技术旨在利用这些天然系统构建更先进的体外反应,能够进行新的化学反应并实现高产率。在此,我们提出一种高效的多重自动化基因组工程(MAGE)策略,用于同时修饰和共纯化来自模式生物大肠杆菌的大型蛋白质复合物和通路,以在体外重建功能性合成蛋白质组。通过应用超过110个MAGE循环,我们成功地在体内将六组氨酸序列插入到38个编码整个翻译机制的必需基因中。简化的翻译蛋白质复合物的共纯化和重建实现了体外蛋白质合成。我们的方法可应用于体外一锅多酶催化(MEC)这一不断发展的应用领域,以操纵或增强体外通路,如天然产物或碳水化合物生物合成。