Suppr超能文献

6-甲氧基乙基氨基萘莫司他洗脱磁性微球的微流体制备

Microfluidic fabrication of 6-methoxyethylamino numonafide-eluting magnetic microspheres.

作者信息

Kim D-H, Choy T, Huang S, Green R M, Omary R A, Larson A C

机构信息

Department of Radiology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.

Department of Radiology, Northwestern University, Chicago, IL 60611, USA.

出版信息

Acta Biomater. 2014 Feb;10(2):742-50. doi: 10.1016/j.actbio.2013.10.018. Epub 2013 Oct 23.

Abstract

Recently, 6-methoxyethylamino numonafide (MEAN) exhibited potent inhibition of hepatocellular carcinoma (HCC) cell growth and less systemic toxicity than amonafide. MEAN may serve as an ideal candidate for the treatment of HCC; however, liver-directed, selective infusion methods may be critical to maximize the MEAN dose delivered to the targeted tumors. This study describes the microfluidic fabrication of MEAN-eluting ultrasmall superparamagnetic iron oxide (USPIO) nanocluster-containing alginate microspheres (MEAN-magnetic microspheres) intended for selective transcatheter delivery to HCC. The resulting drug delivery platform was mono-disperse, microsphere sizes were readily controlled based on channel flow rates during synthesis procedures, and drug release rates from the microspheres could be readily controlled with the introduction of USPIO nanoclusters. The MR relaxivity properties of the microspheres suggest the feasibility of in vivo imaging after administration, and these microspheres exhibited potent therapeutic effects significantly inhibiting cell growth inducing apoptosis in hepatoma cells.

摘要

最近,6-甲氧基乙基氨基萘莫司他(MEAN)对肝癌(HCC)细胞生长表现出强效抑制作用,且与氨萘非相比全身毒性更小。MEAN可能是治疗肝癌的理想候选药物;然而,肝脏靶向的选择性输注方法对于最大化输送到靶向肿瘤的MEAN剂量可能至关重要。本研究描述了用于经导管选择性递送至肝癌的含MEAN洗脱超小超顺磁性氧化铁(USPIO)纳米簇的海藻酸盐微球(MEAN磁性微球)的微流体制备。所得药物递送平台是单分散的,微球尺寸在合成过程中可根据通道流速轻松控制,并且通过引入USPIO纳米簇可轻松控制微球的药物释放速率。微球的磁共振弛豫特性表明给药后体内成像的可行性,并且这些微球表现出显著的治疗效果,可显著抑制肝癌细胞生长并诱导其凋亡。

相似文献

1
Microfluidic fabrication of 6-methoxyethylamino numonafide-eluting magnetic microspheres.
Acta Biomater. 2014 Feb;10(2):742-50. doi: 10.1016/j.actbio.2013.10.018. Epub 2013 Oct 23.
2
MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors.
Theranostics. 2015 Feb 7;5(5):477-88. doi: 10.7150/thno.10823. eCollection 2015.
4
Development and study of a bi-specific magnetic resonance imaging molecular probe for hepatocellular carcinoma.
World J Gastroenterol. 2019 Jun 28;25(24):3030-3043. doi: 10.3748/wjg.v25.i24.3030.
5
Poly(lactide-co-glycolide) microspheres for MRI-monitored transcatheter delivery of sorafenib to liver tumors.
J Control Release. 2014 Jun 28;184:10-7. doi: 10.1016/j.jconrel.2014.04.008. Epub 2014 Apr 13.
6
A GPC3-specific aptamer-mediated magnetic resonance probe for hepatocellular carcinoma.
Int J Nanomedicine. 2018 Aug 1;13:4433-4443. doi: 10.2147/IJN.S168268. eCollection 2018.
7
Preparation of magnetic resonance probes using one-pot method for detection of hepatocellular carcinoma.
World J Gastroenterol. 2015 Apr 14;21(14):4275-83. doi: 10.3748/wjg.v21.i14.4275.
8
Detecting GPC3-Expressing Hepatocellular Carcinoma with L5 Peptide-Guided Pretargeting Approach: In Vitro and In Vivo MR Imaging Experiments.
Contrast Media Mol Imaging. 2018 Sep 10;2018:9169072. doi: 10.1155/2018/9169072. eCollection 2018.

引用本文的文献

1
2
Preclinical Therapeutic Evaluation of Lenvatinib-Eluting Microspheres for Transcatheter Arterial Chemoembolization of Hepatocellular Carcinoma.
Cardiovasc Intervent Radiol. 2022 Dec;45(12):1834-1841. doi: 10.1007/s00270-022-03242-8. Epub 2022 Aug 12.
3
Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Mar;14(2):e1749. doi: 10.1002/wnan.1749. Epub 2021 Aug 17.
4
On-demand degradable embolic microspheres for immediate restoration of blood flow during image-guided embolization procedures.
Biomaterials. 2021 Jan;265:120408. doi: 10.1016/j.biomaterials.2020.120408. Epub 2020 Sep 24.
5
Preparation and evaluation of microfluidic magnetic alginate microparticles for magnetically templated hydrogels.
J Colloid Interface Sci. 2020 Mar 1;561:647-658. doi: 10.1016/j.jcis.2019.11.040. Epub 2019 Nov 13.
6
Image-Guided Cancer Nanomedicine.
J Imaging. 2018;4(1). doi: 10.3390/jimaging4010018. Epub 2018 Jan 11.
7
Synthesis of Biomaterials Utilizing Microfluidic Technology.
Genes (Basel). 2018 Jun 5;9(6):283. doi: 10.3390/genes9060283.
8
Nanocomposite Carriers for Transarterial Chemoembolization of Liver Cancer.
Interv Oncol 360. 2016 Nov;4(11):E173-E182. Epub 2016 Nov 17.
9
Advanced smart-photosensitizers for more effective cancer treatment.
Biomater Sci. 2017 Dec 19;6(1):79-90. doi: 10.1039/c7bm00872d.
10

本文引用的文献

4
Drug-loaded microspheres for the treatment of liver cancer: review of current results.
Cardiovasc Intervent Radiol. 2008 May-Jun;31(3):468-76. doi: 10.1007/s00270-007-9280-6. Epub 2008 Jan 29.
5
Synthesis and anticancer activities of 6-amino amonafide derivatives.
Anticancer Drugs. 2008 Jan;19(1):23-36. doi: 10.1097/CAD.0b013e3282f00e17.
6
Microfluidic scaffolds for tissue engineering.
Nat Mater. 2007 Nov;6(11):908-15. doi: 10.1038/nmat2022. Epub 2007 Sep 30.
7
Superparamagnetic magnetite colloidal nanocrystal clusters.
Angew Chem Int Ed Engl. 2007;46(23):4342-5. doi: 10.1002/anie.200700197.
9
Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review.
J Control Release. 2006 Aug 10;114(1):1-14. doi: 10.1016/j.jconrel.2006.04.017. Epub 2006 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验