Suppr超能文献

甘氨酸甜菜碱作为产甲烷菌(Methanococcoides spp.)的直接底物。

Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.).

机构信息

School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom.

出版信息

Appl Environ Microbiol. 2014 Jan;80(1):289-93. doi: 10.1128/AEM.03076-13. Epub 2013 Oct 25.

Abstract

Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.

摘要

九株海洋产甲烷菌 Methanococcoides 菌株,包括 Methanococcoides methylutens、M. burtonii 和 M. alaskense 的模式菌株,被测试了对 N-甲基化甘氨酸的利用。三株菌(NM1、PM2 和 MKM1)将甘氨酸甜菜碱(N,N,N-三甲基甘氨酸)用作甲烷生成的底物,部分将其脱甲基化为 N,N-二甲基甘氨酸,而没有一株菌使用 N,N-二甲基甘氨酸或肌氨酸(N-甲基甘氨酸)。用甘氨酸甜菜碱(每摩尔产生 3.96 克[干重])的生长速率和每摩尔底物的生长产率与三甲胺(每摩尔产生 4.11 克[干重])相似。然而,由于甘氨酸甜菜碱仅部分脱甲基,因此每个甲基的产率显著高于三甲胺。如果同时提供甘氨酸甜菜碱和三甲胺,三甲胺被脱甲基化为二甲基胺和甲胺,甘氨酸甜菜碱的利用率有限。三甲胺耗尽后,二甲基胺和甘氨酸甜菜碱会被迅速消耗,然后才是甲胺。甘氨酸甜菜碱扩展了一些产甲烷菌可以直接利用的底物范围,使它们能够从底物中获得能量,而无需共生伙伴。

相似文献

1
Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.).
Appl Environ Microbiol. 2014 Jan;80(1):289-93. doi: 10.1128/AEM.03076-13. Epub 2013 Oct 25.
3
Choline and N,N-dimethylethanolamine as direct substrates for methanogens.
Appl Environ Microbiol. 2012 Dec;78(23):8298-303. doi: 10.1128/AEM.01941-12. Epub 2012 Sep 21.
6
Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments.
Antonie Van Leeuwenhoek. 1990 Nov;58(4):291-8. doi: 10.1007/BF00399342.
7
Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis.
J Bacteriol. 2000 Sep;182(17):5020-4. doi: 10.1128/JB.182.17.5020-5024.2000.
8
The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects.
Antonie Van Leeuwenhoek. 2005 May;87(4):289-99. doi: 10.1007/s10482-004-5941-5.
9
A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4668-76. doi: 10.1073/pnas.1409642111. Epub 2014 Oct 13.
10

引用本文的文献

1
Unfolding and de-confounding: biologically meaningful causal inference from longitudinal multi-omic networks using METALICA.
mSystems. 2024 Oct 22;9(10):e0130323. doi: 10.1128/msystems.01303-23. Epub 2024 Sep 6.
4
Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost.
mSystems. 2024 Jan 23;9(1):e0069823. doi: 10.1128/msystems.00698-23. Epub 2023 Dec 8.
5
Perspective on the use of methanogens in lithium recovery from brines.
Front Microbiol. 2023 Aug 2;14:1233221. doi: 10.3389/fmicb.2023.1233221. eCollection 2023.
6
Methanogen activity and microbial diversity in Gulf of Cádiz mud volcano sediments.
Front Microbiol. 2023 May 24;14:1157337. doi: 10.3389/fmicb.2023.1157337. eCollection 2023.
9
Differences in the methanogen community between the nearshore and offshore sediments of the South Yellow Sea.
J Microbiol. 2022 Aug;60(8):814-822. doi: 10.1007/s12275-022-2022-2. Epub 2022 Jul 14.
10
Ecology of Methanonatronarchaeia.
Environ Microbiol. 2022 Nov;24(11):5217-5229. doi: 10.1111/1462-2920.16108. Epub 2022 Jul 18.

本文引用的文献

1
Choline and N,N-dimethylethanolamine as direct substrates for methanogens.
Appl Environ Microbiol. 2012 Dec;78(23):8298-303. doi: 10.1128/AEM.01941-12. Epub 2012 Sep 21.
2
Molecular adaptations to psychrophily: the impact of 'omic' technologies.
Trends Microbiol. 2010 Aug;18(8):374-81. doi: 10.1016/j.tim.2010.05.002. Epub 2010 Jun 18.
3
Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain.
FEMS Microbiol Lett. 2009 Feb;291(2):247-53. doi: 10.1111/j.1574-6968.2008.01464.x.
4
Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307).
Environ Microbiol. 2009 Jan;11(1):239-57. doi: 10.1111/j.1462-2920.2008.01759.x. Epub 2008 Sep 23.
5
Group contribution method for thermodynamic analysis of complex metabolic networks.
Biophys J. 2008 Aug;95(3):1487-99. doi: 10.1529/biophysj.107.124784.
8
Betaine fermentation and oxidation by marine desulfuromonas strains.
Appl Environ Microbiol. 1989 Apr;55(4):965-9. doi: 10.1128/aem.55.4.965-969.1989.
9
Methanogenesis from Methylated Amines in a Hypersaline Algal Mat.
Appl Environ Microbiol. 1988 Jan;54(1):130-136. doi: 10.1128/aem.54.1.130-136.1988.
10
Detection and quantitation of methanogens by enzyme-linked immunosorbent assay.
Appl Environ Microbiol. 1984 Oct;48(4):797-801. doi: 10.1128/aem.48.4.797-801.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验