Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21287, United States.
J Proteome Res. 2013 Dec 6;12(12):5609-15. doi: 10.1021/pr400575f. Epub 2013 Nov 15.
Protein glycosylation has long been recognized as one of the most common post-translational modifications. Most membrane proteins and extracellular proteins are N-linked glycosylated, and they account for the majority of current clinical diagnostic markers or therapeutic targets. Quantitative proteomic analysis of detectable N-linked glycoproteins from cells or tissues using mass spectrometry has the potential to provide biological basis for disease development and identify disease associated glycoproteins. However, the information of low abundance but important peptides is lost due to the lack of MS/MS fragmentation or low quality of MS/MS spectra for low abundance peptides. Here, we show the feasibility of formerly N-glycopeptide identification and quantification at MS1 level using genomic N-glycosite prediction (GenoGlyco) coupled with stable isotopic labeling and accurate mass matching. The GenoGlyco Analyzer software uses accurate precursor masses of detected N-deglycopeptide peaks to match them to N-linked deglycopeptides that are predicted from genes expressed in the cells. This method results in more robust glycopeptide identification compared to MS/MS-based identification. Our results showed that over three times the quantity of N-deglycopeptide assignments from the same mass spectrometry data could be produced in ovarian cancer cell lines compared to a MS/MS fragmentation method. Furthermore, the method was also applied to N-deglycopeptide analysis of ovarian tumors using the identified deglycopeptides from the two ovarian cell lines as heavy standards. We show that the described method has a great potential in the analysis of detectable N-glycoproteins from cells and tissues.
蛋白质糖基化长期以来一直被认为是最常见的翻译后修饰之一。大多数膜蛋白和细胞外蛋白都是 N 连接糖基化的,它们占当前临床诊断标志物或治疗靶点的大多数。使用质谱法对细胞或组织中可检测的 N 连接糖蛋白进行定量蛋白质组学分析,有可能为疾病的发展提供生物学基础,并鉴定与疾病相关的糖蛋白。然而,由于缺乏 MS/MS 碎片化或低丰度肽的 MS/MS 谱质量低,低丰度但重要的肽的信息丢失。在这里,我们展示了使用基因组 N-糖基位点预测 (GenoGlyco) 结合稳定同位素标记和精确质量匹配,在 MS1 水平上对以前的 N-糖肽进行鉴定和定量的可行性。GenoGlyco Analyzer 软件使用检测到的 N-去糖肽峰的精确前体质量将其与从细胞中表达的基因预测的 N-连接去糖肽进行匹配。与基于 MS/MS 的鉴定相比,这种方法可导致更稳健的糖肽鉴定。我们的结果表明,与基于 MS/MS 碎片化的方法相比,在卵巢癌细胞系中,从相同质谱数据中可以产生三倍以上的 N-去糖肽分配。此外,该方法还应用于使用从两个卵巢细胞系鉴定出的去糖肽作为重标准的卵巢肿瘤的 N-去糖肽分析。我们表明,所描述的方法在分析细胞和组织中可检测的 N-糖蛋白方面具有很大的潜力。