Suppr超能文献

利用基因组 N-糖基化位点预测分析 N-糖蛋白。

Analysis of N-glycoproteins using genomic N-glycosite prediction.

机构信息

Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21287, United States.

出版信息

J Proteome Res. 2013 Dec 6;12(12):5609-15. doi: 10.1021/pr400575f. Epub 2013 Nov 15.

Abstract

Protein glycosylation has long been recognized as one of the most common post-translational modifications. Most membrane proteins and extracellular proteins are N-linked glycosylated, and they account for the majority of current clinical diagnostic markers or therapeutic targets. Quantitative proteomic analysis of detectable N-linked glycoproteins from cells or tissues using mass spectrometry has the potential to provide biological basis for disease development and identify disease associated glycoproteins. However, the information of low abundance but important peptides is lost due to the lack of MS/MS fragmentation or low quality of MS/MS spectra for low abundance peptides. Here, we show the feasibility of formerly N-glycopeptide identification and quantification at MS1 level using genomic N-glycosite prediction (GenoGlyco) coupled with stable isotopic labeling and accurate mass matching. The GenoGlyco Analyzer software uses accurate precursor masses of detected N-deglycopeptide peaks to match them to N-linked deglycopeptides that are predicted from genes expressed in the cells. This method results in more robust glycopeptide identification compared to MS/MS-based identification. Our results showed that over three times the quantity of N-deglycopeptide assignments from the same mass spectrometry data could be produced in ovarian cancer cell lines compared to a MS/MS fragmentation method. Furthermore, the method was also applied to N-deglycopeptide analysis of ovarian tumors using the identified deglycopeptides from the two ovarian cell lines as heavy standards. We show that the described method has a great potential in the analysis of detectable N-glycoproteins from cells and tissues.

摘要

蛋白质糖基化长期以来一直被认为是最常见的翻译后修饰之一。大多数膜蛋白和细胞外蛋白都是 N 连接糖基化的,它们占当前临床诊断标志物或治疗靶点的大多数。使用质谱法对细胞或组织中可检测的 N 连接糖蛋白进行定量蛋白质组学分析,有可能为疾病的发展提供生物学基础,并鉴定与疾病相关的糖蛋白。然而,由于缺乏 MS/MS 碎片化或低丰度肽的 MS/MS 谱质量低,低丰度但重要的肽的信息丢失。在这里,我们展示了使用基因组 N-糖基位点预测 (GenoGlyco) 结合稳定同位素标记和精确质量匹配,在 MS1 水平上对以前的 N-糖肽进行鉴定和定量的可行性。GenoGlyco Analyzer 软件使用检测到的 N-去糖肽峰的精确前体质量将其与从细胞中表达的基因预测的 N-连接去糖肽进行匹配。与基于 MS/MS 的鉴定相比,这种方法可导致更稳健的糖肽鉴定。我们的结果表明,与基于 MS/MS 碎片化的方法相比,在卵巢癌细胞系中,从相同质谱数据中可以产生三倍以上的 N-去糖肽分配。此外,该方法还应用于使用从两个卵巢细胞系鉴定出的去糖肽作为重标准的卵巢肿瘤的 N-去糖肽分析。我们表明,所描述的方法在分析细胞和组织中可检测的 N-糖蛋白方面具有很大的潜力。

相似文献

1
Analysis of N-glycoproteins using genomic N-glycosite prediction.
J Proteome Res. 2013 Dec 6;12(12):5609-15. doi: 10.1021/pr400575f. Epub 2013 Nov 15.
5
Mass Spectrometry-Based Chemical and Enzymatic Methods for Global Analysis of Protein Glycosylation.
Acc Chem Res. 2018 Aug 21;51(8):1796-1806. doi: 10.1021/acs.accounts.8b00200. Epub 2018 Jul 16.
6
Multiplexed Targeted Mass Spectrometry-Based Assays for the Quantification of N-Linked Glycosite-Containing Peptides in Serum.
Anal Chem. 2015 Nov 3;87(21):10830-8. doi: 10.1021/acs.analchem.5b02063. Epub 2015 Oct 21.
8
GlycoMaster DB: software to assist the automated identification of N-linked glycopeptides by tandem mass spectrometry.
J Proteome Res. 2014 Sep 5;13(9):3881-95. doi: 10.1021/pr401115y. Epub 2014 Aug 25.
10
Deciphering the Properties and Functions of Glycoproteins Using Quantitative Proteomics.
J Proteome Res. 2023 Jun 2;22(6):1571-1588. doi: 10.1021/acs.jproteome.3c00015. Epub 2023 Apr 3.

引用本文的文献

1
Integration of RNAseq transcriptomics and -glycomics reveal biosynthetic pathways and predict structure-specific -glycan expression.
Chem Sci. 2025 Apr 4;16(17):7155-7172. doi: 10.1039/d5sc00467e. eCollection 2025 Apr 30.
3
Mapping human N-linked glycoproteins and glycosylation sites using mass spectrometry.
Trends Analyt Chem. 2019 May;114:143-150. doi: 10.1016/j.trac.2019.02.009. Epub 2019 Feb 13.
4
-GlycositeAtlas: a database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping.
Clin Proteomics. 2019 Sep 7;16:35. doi: 10.1186/s12014-019-9254-0. eCollection 2019.
7
Large-Scale Measurement of Absolute Protein Glycosylation Stoichiometry.
Anal Chem. 2015 Jul 7;87(13):6479-82. doi: 10.1021/acs.analchem.5b01679. Epub 2015 Jun 15.
8
Analysis of age and gender associated N-glycoproteome in human whole saliva.
Clin Proteomics. 2014 Jun 5;11(1):25. doi: 10.1186/1559-0275-11-25. eCollection 2014.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood samples.
Mol Cell Proteomics. 2013 Jan;12(1):158-71. doi: 10.1074/mcp.M112.023614. Epub 2012 Oct 22.
3
Glycosylation site alteration in the evolution of influenza A (H1N1) viruses.
PLoS One. 2011;6(7):e22844. doi: 10.1371/journal.pone.0022844. Epub 2011 Jul 28.
4
Large-scale phosphosite quantification in tissues by a spike-in SILAC method.
Nat Methods. 2011 Jul 10;8(8):655-8. doi: 10.1038/nmeth.1647.
5
Glycoproteomics and clinical applications.
Proteomics Clin Appl. 2010 Feb;4(2):124-32. doi: 10.1002/prca.200900161. Epub 2009 Dec 9.
6
Super-SILAC mix for quantitative proteomics of human tumor tissue.
Nat Methods. 2010 May;7(5):383-5. doi: 10.1038/nmeth.1446. Epub 2010 Apr 4.
7
High-efficiency labeling of sialylated glycoproteins on living cells.
Nat Methods. 2009 Mar;6(3):207-9. doi: 10.1038/nmeth.1305. Epub 2009 Feb 22.
8
Solid-phase extraction of N-linked glycopeptides.
Nat Protoc. 2007;2(2):334-9. doi: 10.1038/nprot.2007.42.
9
Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study.
Mol Cancer Ther. 2007 Mar;6(3):820-32. doi: 10.1158/1535-7163.MCT-06-0650. Epub 2007 Mar 5.
10
NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.
Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5. doi: 10.1093/nar/gkl842. Epub 2006 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验