Suppr超能文献

一种综合蛋白质组学和糖蛋白质组学方法揭示了良性和恶性上皮性卵巢肿瘤糖基化占有率的差异。

An integrated proteomic and glycoproteomic approach uncovers differences in glycosylation occupancy from benign and malignant epithelial ovarian tumors.

作者信息

Li Qing Kay, Shah Punit, Tian Yuan, Hu Yingwei, Roden Richard B S, Zhang Hui, Chan Daniel W

机构信息

Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.

Department of Pathology, The Johns Hopkins Bayview Medical Center, 4940 Eastern Ave., Building AA, Room 154B, Baltimore, MD 21224 USA.

出版信息

Clin Proteomics. 2017 May 10;14:16. doi: 10.1186/s12014-017-9152-2. eCollection 2017.

Abstract

BACKGROUND

Epithelial ovarian carcinomas encompass a heterogeneous group of diseases with a poor 5-year survival rate. Serous carcinoma is the most common type. Most FDA-approved serum tumor markers are glycoproteins. These glycoproteins on cell surface or shed into the bloodstream could serve as therapeutic targets as well as surrogates of tumor. In addition to glycoprotein expressions, the analysis of protein glycosylation occupancy could be important for the understanding of cancer biology as well as the identification of potential glycoprotein changes in cancer. In this study, we used an integrated proteomics and glycoproteomics approach to analyze global glycoprotein abundance and glycosylation occupancy for proteins from high-grade ovarian serous carcinoma (HGSC) and serous cystadenoma, a benign epithelial ovarian tumor, by using LC-MS/MS-based technique.

METHODS

Fresh-frozen ovarian HGSC tissues and benign serous cystadenoma cases were quantitatively analyzed using isobaric tags for relative and absolute quantitation for both global and glycoproteomic analyses by two dimensional fractionation followed by LC-MS/MS analysis using a Orbitrap Velos mass spectrometer.

RESULTS

Proteins and -linked glycosite-containing peptides were identified and quantified using the integrated global proteomic and glycoproteomic approach. Among the identified -linked glycosite-containing peptides, the relative abundances of glycosite-containing peptide and the glycoprotein levels were compared using glycoproteomic and proteomic data. The glycosite-containing peptides with unique changes in glycosylation occupancies rather than the protein expression levels were identified.

CONCLUSION

In this study, we presented an integrated proteomics and glycoproteomics approach to identify changes of glycoproteins in protein expression and glycosylation occupancy in HGSC and serous cystadenoma and determined the changes of glycosylation occupancy that are associated with malignant and benign tumor tissues. Specific changes in glycoprotein expression or glycosylation occupancy have the potential to be used in the discrimination between benign and malignant epithelial ovarian tumors and to improve our understanding of ovarian cancer biology.

摘要

背景

上皮性卵巢癌是一组异质性疾病,5年生存率较低。浆液性癌是最常见的类型。大多数经美国食品药品监督管理局(FDA)批准的血清肿瘤标志物都是糖蛋白。这些细胞表面或释放到血液中的糖蛋白可作为治疗靶点以及肿瘤的替代标志物。除了糖蛋白表达外,蛋白质糖基化占有率的分析对于理解癌症生物学以及识别癌症中潜在的糖蛋白变化可能也很重要。在本研究中,我们采用蛋白质组学和糖蛋白质组学相结合的方法,使用基于液相色谱-串联质谱(LC-MS/MS)的技术,分析高级别浆液性卵巢癌(HGSC)和浆液性囊腺瘤(一种良性上皮性卵巢肿瘤)中蛋白质的整体糖蛋白丰度和糖基化占有率。

方法

使用等压标签进行相对和绝对定量,通过二维分级分离对新鲜冷冻的卵巢HGSC组织和良性浆液性囊腺瘤病例进行定量分析,用于整体和糖蛋白质组分析,随后使用Orbitrap Velos质谱仪进行LC-MS/MS分析。

结果

使用整合的整体蛋白质组学和糖蛋白质组学方法鉴定并定量了蛋白质和含N-连接糖基化位点的肽段。在鉴定出的含N-连接糖基化位点的肽段中,利用糖蛋白质组学和蛋白质组学数据比较了含糖基化位点肽段的相对丰度和糖蛋白水平。鉴定出了糖基化占有率有独特变化而非蛋白质表达水平有变化的含糖基化位点的肽段。

结论

在本研究中,我们提出了一种蛋白质组学和糖蛋白质组学相结合的方法,以鉴定HGSC和浆液性囊腺瘤中糖蛋白在蛋白质表达和糖基化占有率方面的变化,并确定了与恶性和良性肿瘤组织相关的糖基化占有率变化。糖蛋白表达或糖基化占有率的特定变化有可能用于鉴别良性和恶性上皮性卵巢肿瘤,并增进我们对卵巢癌生物学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2658/5424371/b59bcaac50a5/12014_2017_9152_Fig1_HTML.jpg

相似文献

4
Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma.
Cell Rep. 2020 Oct 20;33(3):108276. doi: 10.1016/j.celrep.2020.108276.
7
The O-Linked Glycome and Blood Group Antigens ABO on Mucin-Type Glycoproteins in Mucinous and Serous Epithelial Ovarian Tumors.
PLoS One. 2015 Jun 15;10(6):e0130197. doi: 10.1371/journal.pone.0130197. eCollection 2015.
8
Glycoproteomic identification of potential glycoprotein biomarkers in ovarian cancer proximal fluids.
Clin Chem Lab Med. 2013 Jul;51(7):1467-76. doi: 10.1515/cclm-2012-0642.

引用本文的文献

1
Mass spectrometry-based proteomics as an emerging tool in clinical laboratories.
Clin Proteomics. 2023 Aug 26;20(1):32. doi: 10.1186/s12014-023-09424-x.
2
Deciphering the Properties and Functions of Glycoproteins Using Quantitative Proteomics.
J Proteome Res. 2023 Jun 2;22(6):1571-1588. doi: 10.1021/acs.jproteome.3c00015. Epub 2023 Apr 3.
3
Orthogonal Proteomic Platforms and Their Implications for the Stable Classification of High-Grade Serous Ovarian Cancer Subtypes.
iScience. 2020 Jun 26;23(6):101079. doi: 10.1016/j.isci.2020.101079. Epub 2020 Apr 18.
4
Recent advances in mass spectrometry based clinical proteomics: applications to cancer research.
Clin Proteomics. 2020 May 24;17:17. doi: 10.1186/s12014-020-09283-w. eCollection 2020.
5
Recent Advances in Glycoproteomic Analysis by Mass Spectrometry.
Anal Chem. 2020 Jan 7;92(1):267-291. doi: 10.1021/acs.analchem.9b04651. Epub 2019 Nov 4.
6
Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry.
Mass Spectrom Rev. 2019 Aug;38(4-5):356-379. doi: 10.1002/mas.21586. Epub 2019 Jan 3.
7
Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses.
Chem Rev. 2018 Sep 12;118(17):7886-7930. doi: 10.1021/acs.chemrev.7b00732. Epub 2018 Mar 19.
8
Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer.
Anal Chem. 2018 Jan 2;90(1):208-224. doi: 10.1021/acs.analchem.7b04202. Epub 2017 Oct 31.

本文引用的文献

1
Cancer Statistics, 2017.
CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
2
Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer.
Cell. 2016 Jul 28;166(3):755-765. doi: 10.1016/j.cell.2016.05.069. Epub 2016 Jun 29.
3
Protein Z: A putative novel biomarker for early detection of ovarian cancer.
Int J Cancer. 2016 Jun 15;138(12):2984-92. doi: 10.1002/ijc.30020. Epub 2016 Feb 19.
4
Protein-Specific Differential Glycosylation of Immunoglobulins in Serum of Ovarian Cancer Patients.
J Proteome Res. 2016 Mar 4;15(3):1002-10. doi: 10.1021/acs.jproteome.5b01071. Epub 2016 Feb 24.
5
Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial.
Lancet. 2016 Mar 5;387(10022):945-956. doi: 10.1016/S0140-6736(15)01224-6. Epub 2015 Dec 17.
6
Genomic testing and precision medicine--What does this mean for gynecologic oncology?
Gynecol Oncol. 2016 Jan;140(1):3-5. doi: 10.1016/j.ygyno.2015.12.001. Epub 2015 Dec 4.
7
A mass spectrometric insight into the origins of benign gynecological disorders.
Mass Spectrom Rev. 2017 May;36(3):450-470. doi: 10.1002/mas.21484. Epub 2015 Dec 3.
9
Ovarian Cancer Molecular Stratification and Tumor Heterogeneity: A Necessity and a Challenge.
Front Oncol. 2015 Oct 21;5:229. doi: 10.3389/fonc.2015.00229. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验