Li Zhong, Du Lei, Zhang Wei, Zhang Xingwang, Jiang Yuanyuan, Liu Kun, Men Ping, Xu Huifang, Fortman Jeffrey L, Sherman David H, Yu Bing, Gao Song, Li Shengying
From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101.
the University of Chinese Academy of Sciences, Beijing 100049, China.
J Biol Chem. 2017 Apr 28;292(17):7095-7104. doi: 10.1074/jbc.M116.751255. Epub 2017 Mar 14.
Bafilomycins are an important subgroup of polyketides with diverse biological activities and possible applications as specific inhibitors of vacuolar H-ATPase. However, the general toxicity and structural complexity of bafilomycins present formidable challenges to drug design via chemical modification, prompting interests in improving bafilomycin activities via biosynthetic approaches. Two bafilomycin biosynthetic gene clusters have been identified, but their post-polyketide synthase (PKS) tailoring steps for structural diversification and bioactivity improvement remain largely unknown. In this study, the post-PKS tailoring pathway from bafilomycin A (1)→C (2)→B (3) in the marine microorganism was elucidated for the first time by gene inactivation and biochemical characterization. We found that fumarate is first adenylated by a novel fumarate adenylyltransferase Orf3. Then, the fumaryl transferase Orf2 is responsible for transferring the fumarate moiety from fumaryl-AMP to the 21-hydroxyl group of 1 to generate 2. Last, the ATP-dependent amide synthetase BafY catalyzes the condensation of 2 and 2-amino-3-hydroxycyclopent-2-enone (CN) produced by the 5-aminolevulinic acid synthase BafZ and the acyl-CoA ligase BafX, giving rise to the final product 3. The elucidation of fumarate incorporation mechanism represents the first paradigm for biosynthesis of natural products containing the fumarate moiety. Moreover, the bafilomycin post-PKS tailoring pathway features an interesting cross-talk between primary and secondary metabolisms for natural product biosynthesis. Taken together, this work provides significant insights into bafilomycin biosynthesis to inform future pharmacological development of these compounds.
巴弗洛霉素是聚酮化合物的一个重要亚组,具有多种生物活性,并有可能作为液泡H-ATP酶的特异性抑制剂应用。然而,巴弗洛霉素的一般毒性和结构复杂性给通过化学修饰进行药物设计带来了巨大挑战,这促使人们对通过生物合成方法提高巴弗洛霉素活性产生兴趣。已经鉴定出两个巴弗洛霉素生物合成基因簇,但它们在聚酮合酶(PKS)后进行结构多样化和生物活性改善的修饰步骤在很大程度上仍不清楚。在本研究中,首次通过基因失活和生化表征阐明了海洋微生物中巴弗洛霉素A(1)→C(2)→B(3)的PKS后修饰途径。我们发现,富马酸首先由一种新型富马酸腺苷酸转移酶Orf3腺苷化。然后,富马酰转移酶Orf2负责将富马酰部分从富马酰-AMP转移到1的21-羟基上以生成2。最后,ATP依赖性酰胺合成酶BafY催化2与由5-氨基乙酰丙酸合酶BafZ和酰基辅酶A连接酶BafX产生的2-氨基-3-羟基环戊-2-烯酮(CN)缩合,产生最终产物3。富马酸掺入机制的阐明代表了含富马酸部分天然产物生物合成的首个范例。此外,巴弗洛霉素PKS后修饰途径在天然产物生物合成的初级和次级代谢之间具有有趣的相互作用。综上所述,这项工作为巴弗洛霉素生物合成提供了重要见解,为这些化合物未来的药理学开发提供了参考。