Suppr超能文献

用于 4H-SiC 外延石墨烯界面热特性的微/纳尺度空间分辨率温度探测。

Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.

机构信息

Department of Mechanical Engineering, 2025 Black Engineering Building, Iowa State University, Ames, IA 50011-2161, USA.

出版信息

Small. 2011 Dec 2;7(23):3324-33. doi: 10.1002/smll.201101598. Epub 2011 Oct 13.

Abstract

Limited internal phonon coupling and transfer within graphene in the out-of-plane direction significantly affects graphene-substrate interfacial phonon coupling and scattering, and leads to unique interfacial thermal transport phenomena. Through the simultaneous characterization of graphene and SiC Raman peaks, it is possible, for the first time, to distinguish the temperature of a graphene layer and its adjacent 4H-SiC substrate. The thermal probing resolution reaches the nanometer scale with the graphene (≈1.12 nm) and is on the micrometer scale (≈12 μm) within SiC next to the interface. A very high thermal resistance at the interface of 5.30 (-0.46) (+0.46) x 10(-5) Km2 W(-1) is observed by using a Raman frequency method under surface Joule heating. This value is much higher than those from molecular dynamics predictions of 7.01(-1.05) (+1.05) x 10(-1) and 8.47(-0.75) (+0.75) x 10(-10) Km2 w(-1) for surface heat fluxes of 3 × 10(9) and 1 × 10(9) and 1 x 10(10) W m(-2) , respectively. This analysis shows that the measured anomalous thermal contact resistance stems from the thermal expansion mismatch between graphene and SiC under Joule heating. This mismatch leads to interface delamination/separation and significantly enhances local phonon scattering. An independent laser-heating experiment conducted under the same conditions yielded a higher interfacial thermal resistance of 1.01(-0.59) (+1.23) x 10(-4) Km2 W(-1). Furthermore, the peak width method of Raman thermometry is also employed to evaluate the interfacial thermal resistance. The results are 3.52 × 10(-5) and 8.57 × 10(-5) K m2 W(-1) for Joule-heating and laser-heating experiments, respectively, confirming the anomalous thermal resistance between graphene and SiC. The difference in the results from the frequency and peak-width methods is caused by the thermal stress generated in the heating processes.

摘要

在面外方向上,石墨烯内部声子耦合和输运的限制会显著影响石墨烯-衬底界面的声子耦合和散射,从而导致独特的界面热输运现象。通过同时对石墨烯和 SiC 的 Raman 峰进行表征,首次有可能区分石墨烯层及其相邻 4H-SiC 衬底的温度。热探测分辨率达到纳米级,石墨烯(≈1.12nm),而在界面附近的 SiC 中则达到微米级(≈12μm)。通过在表面焦耳加热下使用 Raman 频率方法观察到界面处的热阻非常高,为 5.30(-0.46)(+0.46)x10(-5)Km2W(-1)。这一值远高于分子动力学预测的对于表面热通量分别为 3x10(9)和 1x10(9)和 1x10(10)Wm(-2)时的 7.01(-1.05)(+1.05)x10(-1)和 8.47(-0.75)(+0.75)x10(-10)Km2w(-1)的值。这种分析表明,所测量的异常热接触电阻源于焦耳加热下石墨烯和 SiC 之间的热膨胀失配。这种失配导致界面分层/分离,并显著增强了局部声子散射。在相同条件下进行的独立激光加热实验得出了更高的界面热阻,为 1.01(-0.59)(+1.23)x10(-4)Km2W(-1)。此外,还采用 Raman 热测量的峰值宽度法来评估界面热阻。焦耳加热和激光加热实验的结果分别为 3.52×10(-5)和 8.57×10(-5)K m2 W(-1),证实了石墨烯和 SiC 之间的异常热阻。频率和峰宽法结果的差异是由加热过程中产生的热应力引起的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验