1] Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera, kilómetro 1, 41013 Sevilla, Spain [2] Area de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, 28933 Móstoles, Spain.
Nature. 2013 Oct 31;502(7473):672-6. doi: 10.1038/nature12670.
The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.
碳(C)、氮(N)和磷(P)的生物地球化学循环通过陆地生态系统中的初级生产、呼吸和分解相互关联。有人认为,由于生物和地球化学过程对这些元素供应的控制程度不同,C、N 和 P 循环可能在快速气候变化下脱钩。气候对生物地球化学循环的控制在干旱、半干旱和干燥亚湿润生态系统(干旱地区)中尤为重要,因为它们的生物活动主要受水供应的驱动。全球许多干旱地区在 21 世纪预测的干旱增加,可能会威胁到这些循环之间的平衡,从而对基本养分的供应产生不同的影响。在这里,我们评估了干旱对从除南极洲以外的所有大陆的 224 个干旱地区收集的土壤中 C、N 和 P 之间平衡的影响。我们发现干旱对土壤有机 C 和总 N 浓度有负面影响,但对无机 P 浓度有积极影响。干旱与植物覆盖呈负相关,这可能有利于物理过程(如岩石风化,这是生态系统中 P 的主要来源)的主导地位,而不是提供更多 C 和 N 的生物过程,如凋落物分解。我们的研究结果表明,气候变化预测的任何干旱增加都可能降低全球干旱地区的 N 和 C 浓度,但会增加 P 浓度。这些变化将使干旱地区的 C、N 和 P 循环脱钩,并可能对这些生态系统提供的关键服务产生负面影响。