Maestre Fernando T, Delgado-Baquerizo Manuel, Jeffries Thomas C, Eldridge David J, Ochoa Victoria, Gozalo Beatriz, Quero José Luis, García-Gómez Miguel, Gallardo Antonio, Ulrich Werner, Bowker Matthew A, Arredondo Tulio, Barraza-Zepeda Claudia, Bran Donaldo, Florentino Adriana, Gaitán Juan, Gutiérrez Julio R, Huber-Sannwald Elisabeth, Jankju Mohammad, Mau Rebecca L, Miriti Maria, Naseri Kamal, Ospina Abelardo, Stavi Ilan, Wang Deli, Woods Natasha N, Yuan Xia, Zaady Eli, Singh Brajesh K
Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain;
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, NSW, Australia;
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15684-9. doi: 10.1073/pnas.1516684112. Epub 2015 Dec 8.
Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.
土壤细菌和真菌在陆地生态系统的功能中发挥着关键作用,然而我们对它们对气候变化的反应的理解,却远远落后于对其他生物的理解。在旱地(旱地占地球表面约41%)方面,我们的理解存在尤为明显的差距,因为迄今为止尚未在这些环境中对土壤细菌和真菌的联合多样性进行全球性、系统性评估。在此,我们展示了一项针对除南极洲以外各大洲80个旱地地点开展的研究结果,以评估干旱度的变化如何影响土壤细菌和真菌的组成、丰度及多样性。随着干旱度增加,土壤细菌和真菌的多样性及丰度均降低。这些结果在很大程度上是由干旱度对土壤有机碳含量的负面影响所驱动,而土壤有机碳含量对细菌和真菌的丰度及多样性均有正向影响。干旱促进了土壤细菌组成的转变,绿弯菌门和α-变形菌纲的相对丰度增加,而酸杆菌门和疣微菌门的相对丰度降低。与之前大陆尺度和全球尺度研究的报道相反,土壤pH并非细菌多样性的主要驱动因素,并且真菌群落以子囊菌门为主。我们的结果填补了我们对陆地生态系统中土壤微生物群落理解的关键空白。这些结果表明,干旱度的变化(如气候变化模型所预测的那些变化)可能会降低微生物的丰度和多样性,这种反应可能会影响全球旱地关键生态系统服务的提供。