Suppr超能文献

基于微通道-纳通道-微通道阵列的精确基因转染的纳电穿孔系统设计。

Design of a microchannel-nanochannel-microchannel array based nanoelectroporation system for precise gene transfection.

机构信息

Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio, 43210, USA.

出版信息

Small. 2014 Mar 12;10(5):1015-23. doi: 10.1002/smll.201300116. Epub 2013 Oct 31.

Abstract

A micro/nano-fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non-viral gene transfection is described. A dip-combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4-butanediol diacrylate (1,4-BDDA), adopted to convert the microridge-nanowire-microridge array into a microchannel-nanochannel-microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 μm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow-up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.

摘要

一种纳米通道电穿孔(NEP)阵列的微/纳加工工艺及其在非病毒基因转染中精确递送电质粒的应用。优化了一种蘸涂设备,以在聚二甲基硅氧烷(PDMS)表面上的微脊阵列上产生 DNA 纳米线,产率高达 95%。采用基于低粘度树脂 1,4-丁二醇二丙烯酸酯(1,4-BDDA)的分子印迹技术,将微脊-纳米线-微脊阵列转化为微通道-纳米通道-微通道(MNM)阵列。飞秒激光烧蚀的二次加工将微通道的一侧从 3000 缩短到 50 μm,以方便细胞加载和卸载。然后将生物芯片密封在带有储液器和微流道的封装盒中,以实现细胞和质粒的加载,并保护生物芯片免受泄漏和污染。NEP 后可以打开封装盒进行细胞卸载,以便进行后续的细胞培养和分析。这些 NEP 盒可以放置在旋转盘中,最多可以堆叠十个盘进行旋转。产生的离心力可以在 3 分钟内将数百或数千个细胞同时操纵到 NEP 阵列的微通道中。为了证明其应用,将诱导多能干细胞(iPSC)的 13 kbp OSKM 质粒注入小鼠胚胎成纤维细胞(MEFCs)中。NEP 生物芯片中转染细胞的荧光检测表明,与传统的批量电穿孔(BEP)方法相比,传递的剂量更高且更均匀。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验