Suppr超能文献

使用氧纳米载体对缺血组织进行早期干预可成功实施恢复性细胞疗法。

Early Intervention in Ischemic Tissue with Oxygen Nanocarriers Enables Successful Implementation of Restorative Cell Therapies.

作者信息

Diaz-Starokozheva Ludmila, Das Devleena, Gu Xiangming, Moore Jordan T, Lemmerman Luke R, Valerio Ian, Powell Heather M, Higuita-Castro Natalia, Go Michael R, Palmer Andre F, Gallego-Perez Daniel

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA.

Department of Surgery, The Ohio State University, Columbus, OH USA.

出版信息

Cell Mol Bioeng. 2020 May 29;13(5):435-446. doi: 10.1007/s12195-020-00621-4. eCollection 2020 Oct.

Abstract

BACKGROUND

Tissue ischemia contributes to necrosis and infection. While angiogenic cell therapies have emerged as a promising strategy against ischemia, current approaches to cell therapies face multiple hurdles. Recent advances in nuclear reprogramming could potentially overcome some of these limitations. However, under severely ischemic conditions necrosis could outpace reprogramming-based repair. As such, adjunctive measures are required to maintain a minimum level of tissue viability/activity for optimal response to restorative interventions.

METHODS

Here we explored the combined use of polymerized hemoglobin (PolyHb)-based oxygen nanocarriers with Tissue Nano-Transfection (TNT)-driven restoration to develop tissue preservation/repair strategies that could potentially be used as a first line of care. Random-pattern cutaneous flaps were created in a mouse model of ischemic injury. PolyHbs with high and low oxygen affinity were synthesized and injected into the tissue flap at various timepoints of ischemic injury. The degree of tissue preservation was evaluated in terms of perfusion, oxygenation, and resulting necrosis. TNT was then used to deploy reprogramming-based vasculogenic cell therapies to the flaps nanochannels. Reprogramming/repair outcomes were evaluated in terms of vascularity and necrosis.

RESULTS

Flaps treated with PolyHbs exhibited a gradual decrease in necrosis as a function of time-to-intervention, with low oxygen affinity PolyHb showing the best outcomes. TNT-based intervention of the flap in combination with PolyHb successfully curtailed advanced necrosis compared to flaps treated with only PolyHb or TNT alone.

CONCLUSIONS

These results indicate that PolyHb and TNT technologies could potentially be synergistically deployed and used as early intervention measures to combat severe tissue ischemia.

摘要

背景

组织缺血会导致坏死和感染。虽然血管生成细胞疗法已成为对抗缺血的一种有前景的策略,但目前的细胞疗法面临多重障碍。核重编程的最新进展可能会克服其中一些局限性。然而,在严重缺血条件下,坏死速度可能超过基于重编程的修复速度。因此,需要采取辅助措施来维持组织活力/活性的最低水平,以实现对恢复性干预的最佳反应。

方法

在此,我们探索了基于聚合血红蛋白(PolyHb)的氧纳米载体与组织纳米转染(TNT)驱动的修复联合使用,以开发可能用作一线治疗的组织保存/修复策略。在缺血性损伤小鼠模型中创建随机模式皮瓣。合成了具有高氧亲和力和低氧亲和力的PolyHb,并在缺血性损伤的不同时间点注入组织皮瓣。从灌注、氧合和由此产生的坏死方面评估组织保存程度。然后使用TNT将基于重编程的血管生成细胞疗法部署到皮瓣纳米通道中。从血管生成和坏死方面评估重编程/修复结果。

结果

用PolyHb处理的皮瓣坏死程度随干预时间逐渐降低,低氧亲和力的PolyHb显示出最佳结果。与仅用PolyHb或仅用TNT处理的皮瓣相比,基于TNT的皮瓣干预与PolyHb联合使用成功减少了晚期坏死。

结论

这些结果表明,PolyHb和TNT技术可能会协同部署,并用作对抗严重组织缺血的早期干预措施。

相似文献

1
Early Intervention in Ischemic Tissue with Oxygen Nanocarriers Enables Successful Implementation of Restorative Cell Therapies.
Cell Mol Bioeng. 2020 May 29;13(5):435-446. doi: 10.1007/s12195-020-00621-4. eCollection 2020 Oct.
2
Biocompatibility of the oxygen carrier polymerized human hemoglobin towards HepG2/C3A cells.
Heliyon. 2023 May 2;9(5):e15878. doi: 10.1016/j.heliyon.2023.e15878. eCollection 2023 May.
6
Macrophage modulation by polymerized hemoglobins: Potential as a wound-healing therapy.
Technology (Singap World Sci). 2019 Sep-Dec;7(3n04):84-97. doi: 10.1142/s2339547819500055. Epub 2020 Jan 21.
7
Hemoglobin-based oxygen carrier does not improve survival of ischemic rat island groin flaps.
J Invest Surg. 2006 Sep-Oct;19(5):299-305. doi: 10.1080/08941930600889417.
8
Ischemic flap survival improvement by composition-selective fat grafting with novel adipose tissue derived product - stromal vascular fraction gel.
Biochem Biophys Res Commun. 2018 Jan 15;495(3):2249-2256. doi: 10.1016/j.bbrc.2017.11.196. Epub 2017 Dec 24.

引用本文的文献

2
Cell and tissue reprogramming: Unlocking a new era in medical drug discovery.
Pharmacol Rev. 2025 Jun 26;77(5):100077. doi: 10.1016/j.pharmr.2025.100077.
3
7
Stem Cell Homing in Intrathecal Applications and Inspirations for Improvement Paths.
Int J Mol Sci. 2022 Apr 13;23(8):4290. doi: 10.3390/ijms23084290.
8
Designer Extracellular Vesicles Modulate Pro-Neuronal Cell Responses and Improve Intracranial Retention.
Adv Healthc Mater. 2022 Mar;11(5):e2100805. doi: 10.1002/adhm.202100805. Epub 2022 Jan 21.

本文引用的文献

1
Controlled Polymerization and Ultrafiltration Increase the Consistency of Polymerized Hemoglobin for Use as an Oxygen Carrier.
Bioconjug Chem. 2020 Mar 18;31(3):605-621. doi: 10.1021/acs.bioconjchem.9b00766. Epub 2020 Jan 7.
3
Mixtures of tense and relaxed state polymerized human hemoglobin regulate oxygen affinity and tissue construct oxygenation.
PLoS One. 2017 Oct 11;12(10):e0185988. doi: 10.1371/journal.pone.0185988. eCollection 2017.
4
Nanochip Turns Skin Into a Bioreactor.
JAMA. 2017 Sep 12;318(10):898. doi: 10.1001/jama.2017.12097.
5
Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue.
Nat Nanotechnol. 2017 Oct;12(10):974-979. doi: 10.1038/nnano.2017.134. Epub 2017 Aug 7.
6
Artificial Oxygen Carrier as Therapeutics Rather Than Blood Substitute for Transfusion.
Artif Organs. 2017 Apr;41(4):312-315. doi: 10.1111/aor.12917.
7
Nanochannel Electroporation as a Platform for Living Cell Interrogation in Acute Myeloid Leukemia.
Adv Sci (Weinh). 2015 Jul 16;2(12):1500111. doi: 10.1002/advs.201500111. eCollection 2015 Dec.
8
Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform.
Small. 2016 Nov;12(43):5971-5980. doi: 10.1002/smll.201601465. Epub 2016 Sep 20.
9
Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia.
J Vasc Surg. 2017 Mar;65(3):826-838.e1. doi: 10.1016/j.jvs.2015.02.061. Epub 2016 Feb 24.
10
Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers.
Nanomedicine. 2016 Feb;12(2):399-409. doi: 10.1016/j.nano.2015.11.015. Epub 2015 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验