Chen Chen-Yu, Kim Eunkyoung, Zakaria Fauziah Rahma, Chu Monica J, Wu Benjamin, Payne Gregory F, Bentley William E
Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA.
Small Methods. 2025 Aug;9(8):e2401843. doi: 10.1002/smtd.202401843. Epub 2025 Jan 29.
Redox provides unique opportunities for interconverting molecular/biological information into electronic signals. Here, the fabrication of a 3D-printed multiwell device that can be interfaced into existing laboratory instruments (e.g., well-plate readers and microscopes) to enable advanced redox-based spectral and electrochemical capabilities is reported. In the first application, mediated probing is used as a soft sensing method for biomanufacturing: it is shown that electrochemical signal metrics can discern intact mAbs from partially reduced mAb variants (fragmentation), and that these near-real-time electrical measurements correlate to off-line chemical analysis. In the second application, operando spectroelectrochemical measurements are used to characterize a redox-active catechol-based hydrogel film: it is shown that electron transfer into/from the film correlates to the molecular switching of the film's redox state with the film's absorbance increasing upon oxidation and the film's fluorescence increasing upon reduction. In the final example, a synthetic biofilm containing redox-responsive E. coli is electro-assembled: it is shown that gene expression can be induced under reducing conditions (via reductive HO generation) or oxidative conditions (via oxidation of a phenolic redox-signaling molecule). Overall, this work demonstrates that 3D printing allows the fabrication of bespoke electrochemical devices that can accelerate the understanding of redox-based phenomena in biology and enable the detection/characterization redox activities in technology.
氧化还原为将分子/生物信息转化为电信号提供了独特的机会。在此,报道了一种3D打印的多孔装置的制造,该装置可与现有的实验室仪器(如微孔板读数器和显微镜)连接,以实现基于氧化还原的先进光谱和电化学功能。在第一个应用中,介导探测被用作生物制造的一种软传感方法:结果表明,电化学信号指标可以区分完整的单克隆抗体和部分还原的单克隆抗体变体(片段化),并且这些近实时电学测量与离线化学分析相关。在第二个应用中,操作光谱电化学测量用于表征基于氧化还原活性儿茶酚的水凝胶膜:结果表明,电子进出该膜与膜的氧化还原状态的分子开关相关,膜在氧化时吸光度增加,在还原时荧光增加。在最后一个例子中,电组装了一种含有氧化还原响应性大肠杆菌的合成生物膜:结果表明,基因表达可以在还原条件下(通过还原态HO的产生)或氧化条件下(通过酚类氧化还原信号分子的氧化)被诱导。总的来说,这项工作表明3D打印能够制造定制的电化学装置,从而加速对生物学中基于氧化还原现象的理解,并能够检测/表征技术中的氧化还原活性。