Suppr超能文献

模拟人体小脑经颅直流电刺激产生的电场和电流密度。

Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans.

作者信息

Parazzini Marta, Rossi Elena, Ferrucci Roberta, Liorni Ilaria, Priori Alberto, Ravazzani Paolo

机构信息

CNR Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT, Milano, Italy.

CNR Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT, Milano, Italy; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.

出版信息

Clin Neurophysiol. 2014 Mar;125(3):577-84. doi: 10.1016/j.clinph.2013.09.039. Epub 2013 Oct 28.

Abstract

OBJECTIVE

Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS.

METHODS

Computational electromagnetics techniques were applied in three human realistic models of different ages and gender.

RESULTS

The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique.

CONCLUSIONS

Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS.

SIGNIFICANCE

Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects.

摘要

目的

经颅直流电刺激小脑(即小脑经颅直流电刺激)可调节工作记忆、改变小脑与大脑的相互作用并影响人类的运动。此外,有人提出使用经颅直流电刺激来治疗以小脑功能障碍为特征的疾病。然而,小脑经颅直流电刺激产生的电场(E)和电流密度(J)的空间分布尚不清楚。本研究旨在估计小脑经颅直流电刺激期间的E和J分布。

方法

将计算电磁学技术应用于三个不同年龄和性别的人体真实模型。

结果

较强的E和J主要出现在小脑皮质,有一些(高达4%)扩散到枕叶皮质。此外,活动电极位置±1厘米的变化导致小脑中E和J空间分布的微小变化(高达4%)。最后,E和J扩散到脑干和心脏的程度可忽略不计,从而进一步支持了该技术的安全性。

结论

尽管存在个体差异,我们的建模研究证实小脑是小脑经颅直流电刺激主要涉及的结构。

意义

建模方法表明,在小脑经颅直流电刺激期间,电流扩散到小脑以外的其他结构不太可能产生功能效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验