Suppr超能文献

基于文本挖掘和观察性健康数据科学与信息学通用数据模型检测和筛选免疫相关不良事件信号:框架开发研究

Detecting and Filtering Immune-Related Adverse Events Signal Based on Text Mining and Observational Health Data Sciences and Informatics Common Data Model: Framework Development Study.

作者信息

Yu Yue, Ruddy Kathryn, Mansfield Aaron, Zong Nansu, Wen Andrew, Tsuji Shintaro, Huang Ming, Liu Hongfang, Shah Nilay, Jiang Guoqian

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.

Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, United States.

出版信息

JMIR Med Inform. 2020 Jun 12;8(6):e17353. doi: 10.2196/17353.

Abstract

BACKGROUND

Immune checkpoint inhibitors are associated with unique immune-related adverse events (irAEs). As most of the immune checkpoint inhibitors are new to the market, it is important to conduct studies using real-world data sources to investigate their safety profiles.

OBJECTIVE

The aim of the study was to develop a framework for signal detection and filtration of novel irAEs for 6 Food and Drug Administration-approved immune checkpoint inhibitors.

METHODS

In our framework, we first used the Food and Drug Administration's Adverse Event Reporting System (FAERS) standardized in an Observational Health Data Sciences and Informatics (OHDSI) common data model (CDM) to collect immune checkpoint inhibitor-related event data and conducted irAE signal detection. OHDSI CDM is a standard-driven data model that focuses on transforming different databases into a common format and standardizing medical terms to a common representation. We then filtered those already known irAEs from drug labels and literature by using a customized text-mining pipeline based on clinical text analysis and knowledge extraction system with Medical Dictionary for Regulatory Activities (MedDRA) as a dictionary. Finally, we classified the irAE detection results into three different categories to discover potentially new irAE signals.

RESULTS

By our text-mining pipeline, 490 irAE terms were identified from drug labels, and 918 terms were identified from the literature. In addition, of the 94 positive signals detected using CDM-based FAERS, 53 signals (56%) were labeled signals, 10 (11%) were unlabeled published signals, and 31 (33%) were potentially new signals.

CONCLUSIONS

We demonstrated that our approach is effective for irAE signal detection and filtration. Moreover, our CDM-based framework could facilitate adverse drug events detection and filtration toward the goal of next-generation pharmacovigilance that seamlessly integrates electronic health record data for improved signal detection.

摘要

背景

免疫检查点抑制剂与独特的免疫相关不良事件(irAE)相关。由于大多数免疫检查点抑制剂是市场上的新药,利用真实世界数据源进行研究以调查其安全性概况非常重要。

目的

本研究的目的是为美国食品药品监督管理局(FDA)批准的6种免疫检查点抑制剂开发一种新型irAE信号检测和筛选框架。

方法

在我们的框架中,我们首先使用在观察性健康数据科学与信息学(OHDSI)通用数据模型(CDM)中标准化的FDA不良事件报告系统(FAERS)来收集免疫检查点抑制剂相关事件数据并进行irAE信号检测。OHDSI CDM是一个由标准驱动的数据模型,专注于将不同数据库转换为通用格式,并将医学术语标准化为通用表示形式。然后,我们使用基于临床文本分析和知识提取系统的定制文本挖掘管道,以《药物监管活动医学词典》(MedDRA)作为词典,从药物标签和文献中筛选出那些已知的irAE。最后,我们将irAE检测结果分为三个不同类别,以发现潜在的新irAE信号。

结果

通过我们的文本挖掘管道,从药物标签中识别出490个irAE术语,从文献中识别出918个术语。此外,在使用基于CDM的FAERS检测到的94个阳性信号中,53个信号(56%)为已标注信号,10个(11%)为未标注的已发表信号,31个(33%)为潜在新信号。

结论

我们证明了我们的方法对于irAE信号检测和筛选是有效的。此外,我们基于CDM的框架可以促进药物不良事件的检测和筛选,朝着下一代药物警戒的目标发展,即无缝集成电子健康记录数据以改善信号检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f612/7320306/382e189b8fcd/medinform_v8i6e17353_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验