Universität Tübingen, Botanisches Institut, Auf der Morgenstelle 1, W-7400, Tübingen, Germany.
Planta. 1992 Mar;188(1):129-36. doi: 10.1007/BF01160722.
Fungal mycelium of the fly agaric (Amanita muscaria [L. ex Fr.] Hooker), and inoculated or noninoculated seedlings of Norway spruce (Picea abies [L.] Karst.) were grown aseptically under controlled conditions. In order to detect symbiosis-specific polypeptides ('ectomycorrhizins', see Hubert and Martin, 1988, New Phytol.110, 339-346) the protein patterns of (i) fungal mycelium, (ii) mycorrhizal, and (iii) non-mycorrhizal root tips were compared by means of one- and twodimensional electrophoresis on a microscale. Because of the sensitivity of these micromethods (50 and 200 ng of protein, respectively), single mycorrhizal root tips and even the minute quantities of extramatrical mycelium growing between the roots of inoculated plants could be analysed. Differences in the protein patterns of root tips could be shown within the root system of an individual plant (mycorrhizal as well as non-mycorrhizal). In addition, the protein pattern of fungal mycelium grown on a complex medium (malt extract and casein hydrolysate) differed from that of extramatrical mycelium collected from the mycorrhiza culture (pure mineral medium). Such differences in protein patterns are obviously due to the composition of the media and/or different developmental stages. Consequently, conventional analyses which use extracts of a large number of root tips, are not suitable for differentiating between these effects and symbiosis-specific differences in protein patterns. In order to detect ectomycorrhizins, it is suggested that roots and mycelium from individual, inoculated plants should be analysed. This approach eliminates the influence of differing media, and at the same time allows a correct discrimination between developmental and symbiosisspecific changes. In our gels we could only detect changes in spot intensity but could not detect any ectomycorrhizins or the phenomenon of polypeptide 'cleansing', which both characterize theEucalyptus-Pisolithus symbiosis (Martin and Hubert, 1991, Experientia47, 321-331). We thus suggest that these reported effects either are specific for theEucalyptus-Pisolithus symbiosis or simply represent artifacts. The latter point of view is strengthened by a comparison of the experimental approaches.
无菌条件下,在受控环境中培养蝇蕈(Amanita muscaria [L. ex Fr.] Hooker)的真菌菌丝,以及接种或未接种挪威云杉(Picea abies [L.] Karst.)幼苗。为了检测共生特异性多肽(“外生菌根素”,见 Hubert 和 Martin,1988,New Phytol.110, 339-346),通过微尺度的一维和二维电泳比较了(i)真菌菌丝、(ii)菌根和(iii)非菌根根尖的蛋白质图谱。由于这些微量方法的灵敏度(分别为 50 和 200ng 蛋白质),甚至可以分析接种植物根系之间生长的单个菌根根尖和极少量的外生菌丝。可以在单个植物的根系内显示根尖蛋白质图谱的差异(菌根和非菌根)。此外,在复杂培养基(麦芽提取物和酪蛋白水解物)上生长的真菌菌丝的蛋白质图谱与从菌根培养物中收集的外生菌丝(纯矿物培养基)的蛋白质图谱不同。这种蛋白质图谱的差异显然是由于培养基的组成和/或不同的发育阶段所致。因此,使用大量根尖提取物进行的常规分析不适合区分这些影响和蛋白质图谱的共生特异性差异。为了检测外生菌根素,建议分析单个接种植物的根和菌丝。这种方法消除了不同培养基的影响,同时可以正确区分发育和共生特异性变化。在我们的凝胶中,我们只能检测到斑点强度的变化,但不能检测到任何外生菌根素或多肽“净化”现象,这两者都是桉树-蚝菌共生的特征(Martin 和 Hubert,1991,Experientia47, 321-331)。因此,我们建议这些报道的影响要么是桉树-蚝菌共生特有的,要么仅仅是人为因素。通过比较实验方法,加强了后一种观点。