Department of Agronomy and Plant Genetics and the Plant Molecular Genetics Institute, University of Minnesota, 55108, St Paul, MN, USA.
Theor Appl Genet. 1993 Oct;87(1-2):233-7. doi: 10.1007/BF00223770.
Near-isogenic lines (NILs) are a valuable resource for detecting linkages between qualitative trait loci and molecular markers. Molecular marker studies are expensive and methods that require genotyping fewer individuals, such as the NIL-analysis method, are desirable. We present a theory for using sets of NILs to detect linkages between molecular markers and introgressed loci. The probability that a marker a specific distance from the introgressed gene will have a donor parent allele in a near-isogenic line is a function of the distance between the marker and the gene, and the number of back-crosses and/or selfs used in deriving the NIL. The binomial probability formula is used to calculate the probability of having a donor parent allele at a given marker when sets of NILs are used. The formulae given allow calculation of the probability that a marker is linked to the introgressed gene, as well as the probability that a gene will be successfully detected when using given numbers of NILs, backcrosses, and molecular markers.
近等基因系(NILs)是检测质量性状基因座与分子标记之间连锁关系的一种有价值的资源。分子标记研究成本高昂,因此需要对较少个体进行基因分型的方法,例如 NIL 分析方法,是理想的选择。我们提出了一种使用 NIL 集合来检测分子标记和渐渗基因座之间连锁关系的理论。在近等基因系中,与渐渗基因特定距离的标记具有供体亲本等位基因的概率是标记与基因之间的距离以及在推导 NIL 时使用的回交和/或自交次数的函数。二项式概率公式用于计算在使用 NIL 集合时在给定标记处具有供体亲本等位基因的概率。所给出的公式允许计算标记与渐渗基因连锁的概率,以及在使用给定数量的 NIL、回交和分子标记时成功检测基因的概率。