Suppr超能文献

对一组玉米杂种优势 QTL 的近等基因系进行广泛的基因组特征分析。

Extensive genomic characterization of a set of near-isogenic lines for heterotic QTL in maize (Zea mays L.).

机构信息

Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.

出版信息

BMC Genomics. 2013 Jan 29;14:61. doi: 10.1186/1471-2164-14-61.

Abstract

BACKGROUND

Despite the crucial role that heterosis has played in crop improvement, its genetic and molecular bases are still elusive. Several types of structured populations were used to discover the genetic architecture underlying complex phenotypes, and several QTL related to heterosis were detected. However, such analyses generally lacked the statistical power required for the detailed characterization of individual QTL. Currently, QTL introgression into near-isogenic materials is considered the most effective strategy to this end, despite such materials inevitably contain a variable, unknown and undesired proportion of non-isogenic genome.An introgression program based on residual heterozygous lines allowed us to develop five pairs of maize (Zea mays L.) near-isogenic lines (NILs) suitable for the fine characterization of three major heterotic QTL previously detected. Here we describe the results of the detailed genomic characterization of these NILs that we undertook to establish their genotypic structure, to verify the presence of the expected genotypes within target QTL regions, and to determine the extent and location of residual non-isogenic genomic regions.

RESULTS

The SNP genotyping approach allowed us to determine the parent-of-origin allele for 14,937 polymorphic SNPs and to describe in detail the genotypic structure of all NILs. The correct introgression was confirmed for all target QTL in the respective NIL and several non-isogenic regions were detected genome-wide. Possible linkage drag effects associated to the specific introgressed regions were observed. The extent and position of other non-isogenic regions varied among NIL pairs, probably deriving from random segregating sections still present at the separation of lineages within pairs.

CONCLUSIONS

The results of this work strongly suggest that the actual isogenicity and the genotypic architecture of near-isogenic materials should be monitored both during the introgression procedure and on the final materials as a paramount requisite for a successful mendelization of target QTL. The information here gathered on the genotypic structure of NILs will be integrated in future experimental programs aimed at the fine mapping and isolation of major heterotic QTL, a crucial step towards the understanding of the molecular bases of heterosis in maize.

摘要

背景

尽管杂种优势在作物改良中发挥了至关重要的作用,但它的遗传和分子基础仍然难以捉摸。几种类型的结构化群体被用于发现复杂表型的遗传结构,并检测到与杂种优势相关的几个 QTL。然而,这种分析通常缺乏详细描述单个 QTL 所需的统计能力。目前,将 QTL 导入近等基因材料被认为是实现这一目标的最有效策略,尽管这些材料不可避免地包含了可变的、未知的和不理想的非等基因基因组的比例。基于剩余杂合系的导入程序使我们能够开发五对适合精细表征先前检测到的三个主要杂种优势 QTL 的玉米(Zea mays L.)近等基因系(NIL)。在这里,我们描述了我们对这些 NIL 进行的详细基因组特征描述的结果,以确定它们的基因型结构,验证目标 QTL 区域内预期基因型的存在,并确定剩余非等基因基因组区域的范围和位置。

结果

SNP 基因分型方法使我们能够确定 14937 个多态性 SNP 的亲本来源等位基因,并详细描述所有 NIL 的基因型结构。在各自的 NIL 中确认了所有目标 QTL 的正确导入,并且在全基因组范围内检测到了几个非等基因区域。观察到与特定导入区域相关的可能连锁拖曳效应。NIL 对之间其他非等基因区域的范围和位置不同,可能来自于仍然存在于谱系分离中的随机分离部分。

结论

这项工作的结果强烈表明,近等基因材料的实际等基因性和基因型结构应在导入过程中和最终材料中进行监测,这是成功 Mendelization 目标 QTL 的首要要求。这里收集的关于 NIL 基因型结构的信息将被整合到未来的实验计划中,旨在对主要杂种优势 QTL 进行精细作图和分离,这是理解玉米杂种优势分子基础的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7588/3567934/93bc893d05d7/1471-2164-14-61-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验