Suppr超能文献

在运动过程中相互对立的力可以消除灵活性和稳定性之间的权衡。

Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218.

出版信息

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18798-803. doi: 10.1073/pnas.1309300110. Epub 2013 Nov 4.

Abstract

A surprising feature of animal locomotion is that organisms typically produce substantial forces in directions other than what is necessary to move the animal through its environment, such as perpendicular to, or counter to, the direction of travel. The effect of these forces has been difficult to observe because they are often mutually opposing and therefore cancel out. Indeed, it is likely that these forces do not contribute directly to movement but may serve an equally important role: to simplify and enhance the control of locomotion. To test this hypothesis, we examined a well-suited model system, the glass knifefish Eigenmannia virescens, which produces mutually opposing forces during a hovering behavior that is analogous to a hummingbird feeding from a moving flower. Our results and analyses, which include kinematic data from the fish, a mathematical model of its swimming dynamics, and experiments with a biomimetic robot, demonstrate that the production and differential control of mutually opposing forces is a strategy that generates passive stabilization while simultaneously enhancing maneuverability. Mutually opposing forces during locomotion are widespread across animal taxa, and these results indicate that such forces can eliminate the tradeoff between stability and maneuverability, thereby simplifying neural control.

摘要

动物运动的一个惊人特征是,生物通常会产生大量的力,这些力的方向与将动物在其环境中移动所需的方向不同,例如垂直于或逆着运动方向。这些力的影响很难观察到,因为它们通常是相互对立的,因此会相互抵消。事实上,这些力可能不会直接促进运动,但可能会起到同样重要的作用:简化和增强运动的控制。为了验证这一假设,我们研究了一个非常适合的模型系统,即玻璃刀鱼 Eigenmannia virescens,它在类似于蜂鸟从移动花朵中进食的悬停行为中产生相互对立的力。我们的结果和分析包括来自鱼类的运动学数据、其游泳动力学的数学模型以及仿生机器人的实验,证明了相互对立的力的产生和差分控制是一种产生被动稳定的策略,同时增强了可操作性。在运动过程中产生相互对立的力在动物分类群中广泛存在,这些结果表明,这种力可以消除稳定性和可操作性之间的权衡,从而简化神经控制。

相似文献

1
Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability.
Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18798-803. doi: 10.1073/pnas.1309300110. Epub 2013 Nov 4.
3
Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors.
Zoology (Jena). 2014 Oct;117(5):337-48. doi: 10.1016/j.zool.2014.04.004. Epub 2014 Jun 12.
4
Maneuvers during legged locomotion.
Chaos. 2009 Jun;19(2):026105. doi: 10.1063/1.3143031.
5
Energy-information trade-offs between movement and sensing.
PLoS Comput Biol. 2010 May 6;6(5):e1000769. doi: 10.1371/journal.pcbi.1000769.
6
A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.
Biol Cybern. 2013 Oct;107(5):513-27. doi: 10.1007/s00422-013-0566-2. Epub 2013 Sep 13.
7
Modeling locomotion of a soft-bodied arthropod using inverse dynamics.
Bioinspir Biomim. 2011 Mar;6(1):016001. doi: 10.1088/1748-3182/6/1/016001. Epub 2010 Dec 15.
8
Kinematics of the ribbon fin in hovering and swimming of the electric ghost knifefish.
J Exp Biol. 2013 Mar 1;216(Pt 5):823-34. doi: 10.1242/jeb.076471. Epub 2012 Nov 29.
9
Biomimetic and bio-inspired robotics in electric fish research.
J Exp Biol. 2013 Jul 1;216(Pt 13):2501-14. doi: 10.1242/jeb.082743.
10
The coordination between digit forces is altered by anticipated changes in prehensile movement patterns.
Exp Brain Res. 2020 May;238(5):1145-1156. doi: 10.1007/s00221-020-05783-1. Epub 2020 Mar 30.

引用本文的文献

1
Humans exploit the trade-off between lateral stability and manoeuvrability during walking.
Proc Biol Sci. 2024 Dec;291(2036):20242040. doi: 10.1098/rspb.2024.2040. Epub 2024 Dec 11.
3
Cost of Transport of Undulating Fin Propulsion.
Biomimetics (Basel). 2023 May 23;8(2):214. doi: 10.3390/biomimetics8020214.
4
Stability-Maneuverability Tradeoffs Provided Diverse Functional Opportunities to Shelled Cephalopods.
Integr Org Biol. 2022 Nov 9;4(1):obac048. doi: 10.1093/iob/obac048. eCollection 2022.
5
Neuromuscular embodiment of feedback control elements in flight.
Sci Adv. 2022 Dec 14;8(50):eabo7461. doi: 10.1126/sciadv.abo7461.
7
Using a biologically mimicking climbing robot to explore the performance landscape of climbing in lizards.
Proc Biol Sci. 2021 Mar 31;288(1947):20202576. doi: 10.1098/rspb.2020.2576.
8
Hydrodynamic Analysis for the Morphing Median Fins of Tuna during Yaw Motions.
Appl Bionics Biomech. 2021 Jan 2;2021:6630839. doi: 10.1155/2021/6630839. eCollection 2021.
9
Neurorobots as a Means Toward Neuroethology and Explainable AI.
Front Neurorobot. 2020 Oct 19;14:570308. doi: 10.3389/fnbot.2020.570308. eCollection 2020.
10
Tuning movement for sensing in an uncertain world.
Elife. 2020 Sep 22;9:e52371. doi: 10.7554/eLife.52371.

本文引用的文献

1
THE INTERACTION OF BEHAVIORAL AND MORPHOLOGICAL CHANGE IN THE EVOLUTION OF A NOVEL LOCOMOTOR TYPE: "FLYING" FROGS.
Evolution. 1990 Dec;44(8):1931-1946. doi: 10.1111/j.1558-5646.1990.tb04300.x.
2
Kinematics of the ribbon fin in hovering and swimming of the electric ghost knifefish.
J Exp Biol. 2013 Mar 1;216(Pt 5):823-34. doi: 10.1242/jeb.076471. Epub 2012 Nov 29.
3
Damping in flapping flight and its implications for manoeuvring, scaling and evolution.
J Exp Biol. 2011 Dec 15;214(Pt 24):4073-81. doi: 10.1242/jeb.047001.
4
Quantifying dynamic stability and maneuverability in legged locomotion.
Integr Comp Biol. 2002 Feb;42(1):149-57. doi: 10.1093/icb/42.1.149.
5
Stability versus maneuverability in aquatic locomotion.
Integr Comp Biol. 2002 Feb;42(1):127-34. doi: 10.1093/icb/42.1.127.
6
Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
Bioinspir Biomim. 2011 Jun;6(2):026004. doi: 10.1088/1748-3182/6/2/026004. Epub 2011 Apr 7.
8
Aquatic manoeuvering with counter-propagating waves: a novel locomotive strategy.
J R Soc Interface. 2011 Jul 6;8(60):1041-50. doi: 10.1098/rsif.2010.0493. Epub 2010 Dec 22.
9
Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta.
Biol Lett. 2010 Jun 23;6(3):422-5. doi: 10.1098/rsbl.2010.0083. Epub 2010 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验