Suppr超能文献

使用生物模拟攀爬机器人探索蜥蜴的攀爬性能格局。

Using a biologically mimicking climbing robot to explore the performance landscape of climbing in lizards.

作者信息

Schultz Johanna T, Beck Hendrik K, Haagensen Tina, Proost Tasmin, Clemente Christofer J

机构信息

School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia.

The Robotics and Autonomous Systems Group, CSIRO Data61, Pullenvale, Queensland, Australia.

出版信息

Proc Biol Sci. 2021 Mar 31;288(1947):20202576. doi: 10.1098/rspb.2020.2576.

Abstract

Locomotion is a key aspect associated with ecologically relevant tasks for many organisms, therefore, survival often depends on their ability to perform well at these tasks. Despite this significance, we have little idea how different performance tasks are weighted when increased performance in one task comes at the cost of decreased performance in another. Additionally, the ability for natural systems to become optimized to perform a specific task can be limited by structural, historic or functional constraints. Climbing lizards provide a good example of these constraints as climbing ability likely requires the optimization of tasks which may conflict with one another such as increasing speed, avoiding falls and reducing the cost of transport (COT). Understanding how modifications to the lizard bauplan can influence these tasks may allow us to understand the relative weighting of different performance objectives among species. Here, we reconstruct multiple performance landscapes of climbing locomotion using a 10 d.f. robot based upon the lizard bauplan, including an actuated spine, shoulders and feet, the latter which interlock with the surface via claws. This design allows us to independently vary speed, foot angles and range of motion (ROM), while simultaneously collecting data on climbed distance, stability and efficiency. We first demonstrate a trade-off between speed and stability, with high speeds resulting in decreased stability and low speeds an increased COT. By varying foot orientation of fore- and hindfeet independently, we found geckos converge on a narrow optimum of foot angles (fore 20°, hind 100°) for both speed and stability, but avoid a secondary wider optimum (fore -20°, hind -50°) highlighting a possible constraint. Modifying the spine and limb ROM revealed a gradient in performance. Evolutionary modifications in movement among extant species over time appear to follow this gradient towards areas which promote speed and efficiency.

摘要

对于许多生物体而言,运动是与生态相关任务相关的一个关键方面,因此,生存往往取决于它们在这些任务中表现良好的能力。尽管这一点很重要,但我们对于当一项任务的性能提升以另一项任务的性能下降为代价时,不同性能任务是如何加权的却知之甚少。此外,自然系统优化以执行特定任务的能力可能会受到结构、历史或功能限制。攀爬蜥蜴就是这些限制的一个很好例子,因为攀爬能力可能需要优化相互冲突的任务,比如提高速度、避免摔倒以及降低运输成本(COT)。了解对蜥蜴身体结构的改变如何影响这些任务,可能会让我们理解不同物种之间不同性能目标的相对权重。在这里,我们基于蜥蜴的身体结构,使用一个具有10个自由度的机器人重建了多个攀爬运动的性能景观,包括一个可驱动的脊柱、肩部和脚部,后者通过爪子与表面互锁。这种设计使我们能够独立改变速度、足部角度和运动范围(ROM),同时收集关于攀爬距离、稳定性和效率的数据。我们首先展示了速度和稳定性之间的权衡,高速会导致稳定性下降,低速则会使运输成本增加。通过独立改变前脚和后脚的方向,我们发现壁虎在速度和稳定性方面都收敛于一个狭窄的最佳足部角度(前脚20°,后脚100°),但避开了另一个更宽的最佳角度(前脚 -20°,后脚 -50°),这突出了一个可能的限制。修改脊柱和肢体的运动范围揭示了性能梯度。随着时间的推移,现存物种运动的进化改变似乎遵循这个梯度,朝着促进速度和效率的区域发展。

相似文献

引用本文的文献

3
Climbing robots for manufacturing.用于制造业的攀爬机器人。
Natl Sci Rev. 2023 Feb 20;10(5):nwad042. doi: 10.1093/nsr/nwad042. eCollection 2023 May.

本文引用的文献

4
Reverse-engineering the locomotion of a stem amniote.对一种有尾两栖动物运动方式的逆向工程。
Nature. 2019 Jan;565(7739):351-355. doi: 10.1038/s41586-018-0851-2. Epub 2019 Jan 16.
6
Lateral undulation of the flexible spine of sprawling posture vertebrates.伸展姿势脊椎动物柔性脊椎的横向波动。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Aug;204(8):707-719. doi: 10.1007/s00359-018-1275-z. Epub 2018 Jul 4.
7
Robotics-inspired biology.受机器人技术启发的生物学。
J Exp Biol. 2018 Mar 29;221(Pt 7):jeb138438. doi: 10.1242/jeb.138438.
10
Predicting the Movement Speeds of Animals in Natural Environments.预测自然环境中动物的移动速度。
Integr Comp Biol. 2015 Dec;55(6):1125-41. doi: 10.1093/icb/icv106. Epub 2015 Oct 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验