Suppr超能文献

在功能化微流控通道内 pH 控制 CD4(+)和 CD19(+)细胞的染色。

pH controlled staining of CD4(+) and CD19(+) cells within functionalized microfluidic channel.

机构信息

Superior School ISUFI, University of Salento, via Arnesano, I-73100 Lecce, Italy ; NNL CNR-Institute of Nanoscience, via Arnesano, I-73100 Lecce, Italy.

出版信息

Biomicrofluidics. 2012 Nov 5;6(4):44107. doi: 10.1063/1.4763560. eCollection 2012.

Abstract

Herein proposed is a simple system to realize hands-free labeling and simultaneous detection of two human cell lines within a microfluidic device. This system was realized by novel covalent immobilization of pH-responsive poly(methacrylic acid) microgels onto the inner glass surface of an assembled polydimethylsiloxane/glass microfluidic channel. Afterwards, selected thiophene labeled monoclonal antibodies, specific for recognition of CD4 antigens on T helper/inducer cells and CD19 antigens on B lymphocytes cell lines, were encapsulated in their active state by the immobilized microgels. When the lymphocytes suspension, containing the two target subpopulations, was flowed through the microchannel, the physiological pH of the cellular suspension induced the release of the labeled antibodies from the microgels and thus the selective cellular staining. The selective pH-triggered staining of the CD4- and CD19-positive cells was investigated in this preliminary experimental study by laser scanning confocal microscopy. This approach represents an interesting and versatile tool to realize cellular staining in a defined module of lab-on-a-chip devices for subsequent detection and counting.

摘要

本文提出了一种简单的系统,可在微流控装置中实现免提标记和同时检测两种人类细胞系。该系统通过将 pH 响应性聚(甲基丙烯酸)微凝胶共价固定到组装的聚二甲基硅氧烷/玻璃微流控通道的内玻璃表面来实现。随后,将针对 T 辅助/诱导细胞上的 CD4 抗原和 B 淋巴细胞系上的 CD19 抗原的选定的噻吩标记单克隆抗体以其活性状态包封在固定的微凝胶中。当含有两种靶亚群的淋巴细胞悬浮液流过微通道时,细胞悬浮液的生理 pH 会导致标记抗体从微凝胶中释放,从而实现选择性细胞染色。在这项初步的实验研究中,通过激光扫描共聚焦显微镜研究了 CD4-和 CD19-阳性细胞的选择性 pH 触发染色。这种方法代表了一种有趣且多功能的工具,可在芯片实验室设备的定义模块中实现细胞染色,以便随后进行检测和计数。

相似文献

1
pH controlled staining of CD4(+) and CD19(+) cells within functionalized microfluidic channel.
Biomicrofluidics. 2012 Nov 5;6(4):44107. doi: 10.1063/1.4763560. eCollection 2012.
3
Uptake and distribution of labeled antibodies into pH-sensitive microgels.
Acta Biomater. 2010 Jun;6(6):2148-56. doi: 10.1016/j.actbio.2009.12.031. Epub 2009 Dec 22.
5
Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip.
Electrophoresis. 2019 Mar;40(6):897-905. doi: 10.1002/elps.201800345. Epub 2018 Nov 7.
6
Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
Cytometry A. 2020 Sep;97(9):909-920. doi: 10.1002/cyto.a.23944. Epub 2019 Dec 19.
7
Rapid automated cell quantification on HIV microfluidic devices.
Lab Chip. 2009 Dec 7;9(23):3364-9. doi: 10.1039/b911882a. Epub 2009 Sep 30.
9
Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
Colloids Surf B Biointerfaces. 2016 Nov 1;147:1-8. doi: 10.1016/j.colsurfb.2016.07.041. Epub 2016 Jul 20.

引用本文的文献

1
An inkjet-printed polysaccharide matrix for on-chip sample preparation in point-of-care cell counting chambers.
RSC Adv. 2020 May 12;10(31):18062-18072. doi: 10.1039/d0ra01645d. eCollection 2020 May 10.

本文引用的文献

2
On-chip sample preparation by controlled release of antibodies for simple CD4 counting.
Lab Chip. 2012 Jan 7;12(1):167-73. doi: 10.1039/c1lc20565j. Epub 2011 Nov 3.
3
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
4
Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting.
Appl Environ Microbiol. 2011 Feb;77(4):1536-9. doi: 10.1128/AEM.01765-10. Epub 2010 Dec 17.
6
Portable filter-based microdevice for detection and characterization of circulating tumor cells.
Clin Cancer Res. 2010 Oct 15;16(20):5011-8. doi: 10.1158/1078-0432.CCR-10-1105. Epub 2010 Sep 28.
7
Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
Chem Soc Rev. 2010 Mar;39(3):1153-82. doi: 10.1039/b820557b. Epub 2010 Jan 25.
8
Uptake and distribution of labeled antibodies into pH-sensitive microgels.
Acta Biomater. 2010 Jun;6(6):2148-56. doi: 10.1016/j.actbio.2009.12.031. Epub 2009 Dec 22.
9
Rapid automated cell quantification on HIV microfluidic devices.
Lab Chip. 2009 Dec 7;9(23):3364-9. doi: 10.1039/b911882a. Epub 2009 Sep 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验