Konigsberg M, Pérez V I, Ríos C, Liu Y, Lee S, Shi Y, Van Remmen H
Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX 78229, USA ; Universidad Autonoma Metropolitana-Iztapalpa, Mexico City, Mexico.
Redox Biol. 2013 Sep 27;1(1):475-82. doi: 10.1016/j.redox.2013.09.004. eCollection 2013.
In the majority of studies using primary cultures of myoblasts, the cells are maintained at ambient oxygen tension (21% O2), despite the fact that physiological O2 at the tissue level in vivo is much lower (~1-5% O2). We hypothesized that the cellular response in presence of high oxygen concentration might be particularly important in studies comparing energetic function or oxidative stress in cells isolated from young versus old animals. To test this, we asked whether oxygen tension plays a role in mitochondrial bioenergetics (oxygen consumption, glycolysis and fatty acid oxidation) or oxidative damage to proteins (protein disulfides, carbonyls and aggregates) in myoblast precursor cells (MPCs) isolated from young (3-4 m) and old (29-30 m) C57BL/6 mice. MPCs were grown under physiological (3%) or ambient (21%) O2 for two weeks prior to exposure to an acute oxidative insult (H2O2). Our results show significantly higher basal mitochondrial respiration in young versus old MPCs, an increase in basal respiration in young MPCs maintained at 3% O2 compared to cells maintained at 21% O2, and a shift toward glycolytic metabolism in old MPCs grown at 21% O2. H2O2 treatment significantly reduced respiration in old MPCs grown at 3% O2 but did not further repress respiration at 21% O2 in old MPCs. Oxidative damage to protein was higher in cells maintained at 21% O2 and increased in response to H2O2 in old MPCs. These data underscore the importance of understanding the effect of ambient oxygen tension in cell culture studies, in particular studies measuring oxidative damage and mitochondrial function.
在大多数使用成肌细胞原代培养物的研究中,尽管体内组织水平的生理氧含量要低得多(约1 - 5% O₂),但细胞是在环境氧张力(21% O₂)下维持培养的。我们推测,在比较从年轻动物与老年动物分离的细胞的能量功能或氧化应激的研究中,高氧浓度下的细胞反应可能尤为重要。为了验证这一点,我们研究了氧张力是否在从年轻(3 - 4个月)和老年(29 - 30个月)C57BL/6小鼠分离的成肌细胞前体细胞(MPC)的线粒体生物能量学(耗氧量、糖酵解和脂肪酸氧化)或蛋白质氧化损伤(蛋白质二硫键、羰基和聚集体)中起作用。在暴露于急性氧化损伤(H₂O₂)之前,MPC在生理(3%)或环境(21%)O₂条件下培养两周。我们的结果显示,年轻MPC的基础线粒体呼吸显著高于老年MPC;与在21% O₂条件下培养的细胞相比,在3% O₂条件下培养的年轻MPC的基础呼吸增加;在21% O₂条件下培养的老年MPC向糖酵解代谢转变。H₂O₂处理显著降低了在3% O₂条件下培养的老年MPC的呼吸,但未进一步抑制在21% O₂条件下培养的老年MPC的呼吸。在21% O₂条件下培养的细胞中蛋白质氧化损伤更高,并且在老年MPC中,这种损伤会因H₂O₂而增加。这些数据强调了在细胞培养研究中,特别是在测量氧化损伤和线粒体功能的研究中,了解环境氧张力影响的重要性。