Suppr超能文献

最小直径划分的模型选择

Model selection for minimum-diameter partitioning.

作者信息

Brusco Michael J, Steinley Douglas

机构信息

Florida State University, Tallahassee, Florida, USA.

出版信息

Br J Math Stat Psychol. 2014 Nov;67(3):471-95. doi: 10.1111/bmsp.12029. Epub 2013 Nov 6.

Abstract

The minimum-diameter partitioning problem (MDPP) seeks to produce compact clusters, as measured by an overall goodness-of-fit measure known as the partition diameter, which represents the maximum dissimilarity between any two objects placed in the same cluster. Complete-linkage hierarchical clustering is perhaps the best-known heuristic method for the MDPP and has an extensive history of applications in psychological research. Unfortunately, this method has several inherent shortcomings that impede the model selection process, such as: (1) sensitivity to the input order of the objects, (2) failure to obtain a globally optimal minimum-diameter partition when cutting the tree at K clusters, and (3) the propensity for a large number of alternative minimum-diameter partitions for a given K. We propose that each of these problems can be addressed by applying an algorithm that finds all of the minimum-diameter partitions for different values of K. Model selection is then facilitated by considering, for each value of K, the reduction in the partition diameter, the number of alternative optima, and the partition agreement among the alternative optima. Using five examples from the empirical literature, we show the practical value of the proposed process for facilitating model selection for the MDPP.

摘要

最小直径划分问题(MDPP)旨在生成紧凑的聚类,这是通过一种称为划分直径的整体拟合优度度量来衡量的,划分直径表示放置在同一聚类中的任意两个对象之间的最大差异。完全链接层次聚类可能是MDPP最著名的启发式方法,并且在心理学研究中有广泛的应用历史。不幸的是,这种方法有几个固有的缺点,阻碍了模型选择过程,例如:(1)对对象输入顺序敏感,(2)在K个聚类处切割树时无法获得全局最优的最小直径划分,以及(3)对于给定的K,存在大量替代的最小直径划分的倾向。我们提出,通过应用一种算法来找到不同K值的所有最小直径划分,可以解决这些问题中的每一个。然后,通过考虑对于每个K值,划分直径的减小、替代最优解的数量以及替代最优解之间的划分一致性,来促进模型选择。使用来自实证文献的五个例子,我们展示了所提出的过程对于促进MDPP模型选择的实用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验