Suppr超能文献

评估药物递送系统跨细胞屏障转运的模型和方法。

Models and methods to evaluate transport of drug delivery systems across cellular barriers.

作者信息

Ghaffarian Rasa, Muro Silvia

机构信息

Fischell Department of Bioengineering, University of Maryland.

出版信息

J Vis Exp. 2013 Oct 17(80):e50638. doi: 10.3791/50638.

Abstract

Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with (125)I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free (125)I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.

摘要

亚微米级载体(纳米载体;NCs)通过改善药物的溶解性、稳定性、循环时间、靶向性和释放来提高药物疗效。此外,穿越体内的细胞屏障对于将治疗性NCs口服递送至循环系统以及从血液转运至需要干预的组织至关重要。NCs穿越细胞屏障的方式有:(i)细胞旁途径,即通过暂时破坏连接相邻细胞的连接结构;(ii)跨细胞途径,即物质通过内吞作用内化,穿过细胞体,并在细胞另一侧表面分泌(转胞吞作用)。将治疗药物或其载体与特异性结合参与转运的细胞表面标志物的靶向剂偶联,可以促进药物穿越细胞屏障。在此,我们提供了测量NCs穿越模型细胞屏障的程度和机制的方法,该模型细胞屏障由生长在Transwell小室多孔膜上的单层胃肠道(GI)上皮细胞组成。通过测量跨上皮电阻(TEER)、对照物质的跨上皮转运以及紧密连接的免疫染色来确认通透性屏障的形成。例如,使用携带治疗性货物并包被有靶向细胞表面决定簇的抗体的约200 nm聚合物NCs。抗体或治疗性货物用(125)I进行放射性同位素标记,将标记的NCs在不同时间段添加到细胞单层上方的上室中。可以检测与细胞相关和/或转运至下层小室的NCs。测量游离(125)I可减去降解部分。通过确定NCs转运对上述屏障参数引起的潜在变化来评估细胞旁途径。通过研究调节内吞作用和转胞吞作用途径的影响来确定跨细胞转运。

相似文献

2
Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1.
J Control Release. 2012 Oct 10;163(1):25-33. doi: 10.1016/j.jconrel.2012.06.007. Epub 2012 Jun 12.
4
Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery.
Int J Nanomedicine. 2011;6:2253-63. doi: 10.2147/IJN.S23962. Epub 2011 Oct 10.
5
An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers.
Eur J Pharm Biopharm. 2018 Jun;127:432-442. doi: 10.1016/j.ejpb.2018.03.013. Epub 2018 Mar 29.
6
Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery.
Adv Drug Deliv Rev. 2012 May 1;64(6):571-88. doi: 10.1016/j.addr.2011.09.010. Epub 2011 Sep 29.
7
Comparative study of nanoparticle-mediated transfection in different GI epithelium co-culture models.
J Control Release. 2012 May 30;160(1):48-56. doi: 10.1016/j.jconrel.2012.01.041. Epub 2012 Feb 3.
8
GLP-2 enhances barrier formation and attenuates TNFα-induced changes in a Caco-2 cell model of the intestinal barrier.
Regul Pept. 2012 Oct 10;178(1-3):95-101. doi: 10.1016/j.regpep.2012.07.002. Epub 2012 Jul 15.
10
Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis.
J Control Release. 2009 Dec 3;140(2):174-81. doi: 10.1016/j.jconrel.2009.08.010. Epub 2009 Aug 20.

引用本文的文献

1
Microfluidic Platform for Real-Time Impedance Profiling of Transwell-Based Barrier Models.
Proc IEEE Sens. 2024 Dec 17:1-4. doi: 10.1109/SENSORS60989.2024.10785013.
2
Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery.
Front Immunol. 2024 Oct 17;15:1451989. doi: 10.3389/fimmu.2024.1451989. eCollection 2024.
3
Microfluidic Gastrointestinal Cell Culture Technologies-Improvements in the Past Decade.
Biosensors (Basel). 2024 Sep 19;14(9):449. doi: 10.3390/bios14090449.
5
Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells.
Mol Pharm. 2024 Mar 4;21(3):1160-1169. doi: 10.1021/acs.molpharmaceut.3c00720. Epub 2023 Oct 18.
6
Type I collagen concentration affects neurite outgrowth of adult rat DRG explants by altering mechanical properties of hydrogels.
J Biomater Sci Polym Ed. 2024 Feb;35(2):164-189. doi: 10.1080/09205063.2023.2272479. Epub 2024 Jan 25.
8
Translocation of outer membrane vesicles from enterohemorrhagic O157 across the intestinal epithelial barrier.
Front Microbiol. 2023 May 25;14:1198945. doi: 10.3389/fmicb.2023.1198945. eCollection 2023.
9
A novel 4-cell in-vitro blood-brain barrier model and its characterization by confocal microscopy and TEER measurement.
J Neurosci Methods. 2023 May 15;392:109867. doi: 10.1016/j.jneumeth.2023.109867. Epub 2023 Apr 26.
10
Customized 3D-printed stackable cell culture inserts tailored with bioactive membranes.
Sci Rep. 2022 Mar 7;12(1):3694. doi: 10.1038/s41598-022-07739-7.

本文引用的文献

1
Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro.
Eur J Pharm Biopharm. 2013 Jun;84(2):275-87. doi: 10.1016/j.ejpb.2012.10.011. Epub 2012 Nov 24.
2
Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo.
J Control Release. 2012 Oct 28;163(2):161-9. doi: 10.1016/j.jconrel.2012.08.031. Epub 2012 Sep 6.
3
Challenges in design and characterization of ligand-targeted drug delivery systems.
J Control Release. 2012 Dec 10;164(2):125-37. doi: 10.1016/j.jconrel.2012.05.052. Epub 2012 Jun 15.
4
Analytical and biological methods for probing the blood-brain barrier.
Annu Rev Anal Chem (Palo Alto Calif). 2012;5:505-31. doi: 10.1146/annurev-anchem-062011-143002.
5
Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1.
J Control Release. 2012 Oct 10;163(1):25-33. doi: 10.1016/j.jconrel.2012.06.007. Epub 2012 Jun 12.
6
Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124.
Biomaterials. 2012 Jul;33(21):5406-13. doi: 10.1016/j.biomaterials.2012.04.036. Epub 2012 May 4.
7
Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery.
Adv Drug Deliv Rev. 2012 May 1;64(6):571-88. doi: 10.1016/j.addr.2011.09.010. Epub 2011 Sep 29.
8
Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models.
J Neurosci Methods. 2011 Aug 15;199(2):223-9. doi: 10.1016/j.jneumeth.2011.05.012. Epub 2011 May 14.
9
Enhanced endothelial delivery and biochemical effects of α-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease.
J Control Release. 2011 Feb 10;149(3):323-31. doi: 10.1016/j.jconrel.2010.10.031. Epub 2010 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验