Spearman James V, Meinel Felix G, Schoepf U Joseph, Apfaltrer Paul, Silverman Justin R, Krazinski Aleksander W, Canstein Christian, De Cecco Carlo Nicola, Costello Philip, Geyer Lucas L
Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower 25 Courtenay Drive, Charleston, SC, 29425-2260, USA.
Eur Radiol. 2014 Feb;24(2):519-26. doi: 10.1007/s00330-013-3052-2. Epub 2013 Nov 6.
This study evaluated the performance of a novel automated software tool for epicardial fat volume (EFV) quantification compared to a standard manual technique at coronary CT angiography (cCTA).
cCTA data sets of 70 patients (58.6 ± 12.9 years, 33 men) were retrospectively analysed using two different post-processing software applications. Observer 1 performed a manual single-plane pericardial border definition and EFVM segmentation (manual approach). Two observers used a software program with fully automated 3D pericardial border definition and EFVA calculation (automated approach). EFV and time required for measuring EFV (including software processing time and manual optimization time) for each method were recorded. Intraobserver and interobserver reliability was assessed on the prototype software measurements. T test, Spearman's rho, and Bland-Altman plots were used for statistical analysis.
The final EFVA (with manual border optimization) was strongly correlated with the manual axial segmentation measurement (60.9 ± 33.2 mL vs. 65.8 ± 37.0 mL, rho = 0.970, P < 0.001). A mean of 3.9 ± 1.9 manual border edits were performed to optimize the automated process. The software prototype required significantly less time to perform the measurements (135.6 ± 24.6 s vs. 314.3 ± 76.3 s, P < 0.001) and showed high reliability (ICC > 0.9).
Automated EFVA quantification is an accurate and time-saving method for quantification of EFV compared to established manual axial segmentation methods.
• Manual epicardial fat volume quantification correlates with risk factors but is time-consuming. • The novel software prototype automates measurement of epicardial fat volume with good accuracy. • This novel approach is less time-consuming and could be incorporated into clinical workflow.
本研究评估了一种用于心外膜脂肪体积(EFV)定量的新型自动化软件工具在冠状动脉CT血管造影(cCTA)中的性能,并与标准手动技术进行比较。
回顾性分析70例患者(年龄58.6±12.9岁,男性33例)的cCTA数据集,使用两种不同的后处理软件应用程序。观察者1进行手动单平面心包边界定义和EFVM分割(手动方法)。两名观察者使用具有全自动3D心包边界定义和EFVA计算功能的软件程序(自动方法)。记录每种方法的EFV和测量EFV所需的时间(包括软件处理时间和手动优化时间)。对原型软件测量结果进行观察者内和观察者间可靠性评估。采用t检验、Spearman秩相关系数和Bland-Altman图进行统计分析。
最终的EFVA(经过手动边界优化)与手动轴向分割测量结果高度相关(60.9±33.2 mL对65.8±37.0 mL,rho = 0.970,P < 0.001)。平均进行3.9±1.9次手动边界编辑以优化自动化过程。软件原型执行测量所需的时间明显更少(135.6±24.6秒对314.3±76.3秒,P < 0.001),并且显示出高可靠性(ICC > 0.9)。
与既定的手动轴向分割方法相比,自动化EFVA定量是一种准确且省时的EFV定量方法。
• 手动心外膜脂肪体积定量与危险因素相关,但耗时。• 新型软件原型能够以良好的准确性自动测量心外膜脂肪体积。• 这种新方法耗时较少,可纳入临床工作流程。