Norlén Alexander, Alvén Jennifer, Molnar David, Enqvist Olof, Norrlund Rauni Rossi, Brandberg John, Bergström Göran, Kahl Fredrik
Chalmers University of Technology , Department of Signals and Systems, Hörsalsvägen 9-11, Gothenburg 412 96, Sweden.
Gothenburg University , Sahlgrenska Academy, Institute of Medicine, The Wallenberg Laboratory, Bruna stråket 16, Gothenburg 413 45, Sweden.
J Med Imaging (Bellingham). 2016 Jul;3(3):034003. doi: 10.1117/1.JMI.3.3.034003. Epub 2016 Sep 15.
Recent findings indicate a strong correlation between the risk of future heart disease and the volume of adipose tissue inside of the pericardium. So far, large-scale studies have been hindered by the fact that manual delineation of the pericardium is extremely time-consuming and that existing methods for automatic delineation lack accuracy. An efficient and fully automatic approach to pericardium segmentation and epicardial fat volume (EFV) estimation is presented, based on a variant of multi-atlas segmentation for spatial initialization and a random forest classifier for accurate pericardium detection. Experimental validation on a set of 30 manually delineated computer tomography angiography volumes shows a significant improvement on state-of-the-art in terms of EFV estimation [mean absolute EFV difference: 3.8 ml (4.7%), Pearson correlation: 0.99] with run times suitable for large-scale studies (52 s). Further, the results compare favorably with interobserver variability measured on 10 volumes.
最近的研究结果表明,未来患心脏病的风险与心包内脂肪组织的体积之间存在很强的相关性。到目前为止,大规模研究受到以下事实的阻碍:手动勾勒心包极其耗时,且现有的自动勾勒方法缺乏准确性。本文提出了一种高效的全自动心包分割和心外膜脂肪体积(EFV)估计方法,该方法基于用于空间初始化的多图谱分割变体和用于精确心包检测的随机森林分类器。在一组30个手动勾勒的计算机断层血管造影体积上进行的实验验证表明,在EFV估计方面,相对于现有技术有显著改进[平均绝对EFV差异:3.8毫升(4.7%),皮尔逊相关性:0.99],运行时间适合大规模研究(52秒)。此外,结果与在10个体积上测量的观察者间变异性相比更具优势。