Klingensmith Jon D, Elliott Addison L, Givan Amy H, Faszold Zechariah D, Mahan Cory L, Doedtman Adam M, Fernandez-Del-Valle Maria
Southern Illinois University Edwardsville, Department of Electrical and Computer Engineering, Edwardsville, Illinois, United States.
Southern Illinois University Edwardsville, Department of Applied Health, Edwardsville, Illinois, United States.
J Med Imaging (Bellingham). 2019 Jan;6(1):014004. doi: 10.1117/1.JMI.6.1.014004. Epub 2019 Feb 7.
Magnetic resonance imaging (MRI) has evolved into the gold standard for quantifying excess adiposity, but reliable, efficient use in longitudinal studies requires analysis of large numbers of images. The objective of this study is to develop and evaluate a segmentation method designed to identify cardiac, subcutaneous, and visceral adipose tissue (VAT) in Dixon MRI scans. The proposed method is evaluated using 10 scans from volunteer females 18- to 35-years old, with body mass indexes between 30 and . Cross-sectional area (CSA) for cardiac adipose tissue (CAT), subcutaneous adipose tissue (SAT), and VAT, is compared to manually-traced results from three observers. Comparisons of CSA are made in 191 images for CAT, 394 images for SAT, and 50 images for VAT. The segmentation correlated well with respect to average observer CSA with Pearson correlation coefficient ( ) values of 0.80 for CAT, 0.99 for SAT, and 0.99 for VAT. The proposed method provides accurate segmentation of CAT, SAT, and VAT and provides an option to support longitudinal studies of obesity intervention.
磁共振成像(MRI)已发展成为量化肥胖程度的金标准,但要在纵向研究中可靠、高效地使用,需要分析大量图像。本研究的目的是开发并评估一种分割方法,用于在狄克逊MRI扫描中识别心脏、皮下和内脏脂肪组织(VAT)。使用10名年龄在18至35岁之间、体重指数在30至 之间的志愿者女性的扫描图像对所提出的方法进行评估。将心脏脂肪组织(CAT)、皮下脂肪组织(SAT)和VAT的横截面积(CSA)与三位观察者手动追踪的结果进行比较。对191张CAT图像、394张SAT图像和50张VAT图像进行CSA比较。分割结果与观察者平均CSA的相关性良好,CAT的皮尔逊相关系数( )值为0.80,SAT为0.99,VAT为0.99。所提出的方法能够准确分割CAT、SAT和VAT,并为支持肥胖干预的纵向研究提供了一种选择。