Suppr超能文献

基于狄克逊磁共振图像的心脏、皮下及内脏脂肪组织分割方法的开发与评估

Development and evaluation of a method for segmentation of cardiac, subcutaneous, and visceral adipose tissue from Dixon magnetic resonance images.

作者信息

Klingensmith Jon D, Elliott Addison L, Givan Amy H, Faszold Zechariah D, Mahan Cory L, Doedtman Adam M, Fernandez-Del-Valle Maria

机构信息

Southern Illinois University Edwardsville, Department of Electrical and Computer Engineering, Edwardsville, Illinois, United States.

Southern Illinois University Edwardsville, Department of Applied Health, Edwardsville, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2019 Jan;6(1):014004. doi: 10.1117/1.JMI.6.1.014004. Epub 2019 Feb 7.

Abstract

Magnetic resonance imaging (MRI) has evolved into the gold standard for quantifying excess adiposity, but reliable, efficient use in longitudinal studies requires analysis of large numbers of images. The objective of this study is to develop and evaluate a segmentation method designed to identify cardiac, subcutaneous, and visceral adipose tissue (VAT) in Dixon MRI scans. The proposed method is evaluated using 10 scans from volunteer females 18- to 35-years old, with body mass indexes between 30 and . Cross-sectional area (CSA) for cardiac adipose tissue (CAT), subcutaneous adipose tissue (SAT), and VAT, is compared to manually-traced results from three observers. Comparisons of CSA are made in 191 images for CAT, 394 images for SAT, and 50 images for VAT. The segmentation correlated well with respect to average observer CSA with Pearson correlation coefficient ( ) values of 0.80 for CAT, 0.99 for SAT, and 0.99 for VAT. The proposed method provides accurate segmentation of CAT, SAT, and VAT and provides an option to support longitudinal studies of obesity intervention.

摘要

磁共振成像(MRI)已发展成为量化肥胖程度的金标准,但要在纵向研究中可靠、高效地使用,需要分析大量图像。本研究的目的是开发并评估一种分割方法,用于在狄克逊MRI扫描中识别心脏、皮下和内脏脂肪组织(VAT)。使用10名年龄在18至35岁之间、体重指数在30至 之间的志愿者女性的扫描图像对所提出的方法进行评估。将心脏脂肪组织(CAT)、皮下脂肪组织(SAT)和VAT的横截面积(CSA)与三位观察者手动追踪的结果进行比较。对191张CAT图像、394张SAT图像和50张VAT图像进行CSA比较。分割结果与观察者平均CSA的相关性良好,CAT的皮尔逊相关系数( )值为0.80,SAT为0.99,VAT为0.99。所提出的方法能够准确分割CAT、SAT和VAT,并为支持肥胖干预的纵向研究提供了一种选择。

相似文献

1
3
5
Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.
Eur J Radiol. 2016 Sep;85(9):1613-21. doi: 10.1016/j.ejrad.2016.06.006. Epub 2016 Jun 8.
7
3D Neural Networks for Visceral and Subcutaneous Adipose Tissue Segmentation using Volumetric Multi-Contrast MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3933-3937. doi: 10.1109/EMBC46164.2021.9630110.
8
Automated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRI.
Magn Reson Imaging. 2018 Jan;45:97-104. doi: 10.1016/j.mri.2017.09.016. Epub 2017 Oct 7.
9
FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI.
Magn Reson Med. 2020 Apr;83(4):1471-1483. doi: 10.1002/mrm.28022. Epub 2019 Oct 21.

本文引用的文献

1
SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.
J Digit Imaging. 2018 Jun;31(3):290-303. doi: 10.1007/s10278-017-0037-8.
2
Automated quantification of epicardial adipose tissue in cardiac magnetic resonance imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7308-11. doi: 10.1109/EMBC.2015.7320079.
3
3D-Dixon MRI based volumetry of peri- and epicardial fat.
Int J Cardiovasc Imaging. 2016 Feb;32(2):291-299. doi: 10.1007/s10554-015-0778-8. Epub 2015 Sep 30.
4
Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature.
Eur Radiol. 2015 Nov;25(11):3372-81. doi: 10.1007/s00330-015-3765-5. Epub 2015 Apr 30.
5
scikit-image: image processing in Python.
PeerJ. 2014 Jun 19;2:e453. doi: 10.7717/peerj.453. eCollection 2014.
6
Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method.
J Magn Reson Imaging. 2015 Jan;41(1):233-41. doi: 10.1002/jmri.24526. Epub 2014 Jan 15.
7
Automated quantification of epicardial adipose tissue using CT angiography: evaluation of a prototype software.
Eur Radiol. 2014 Feb;24(2):519-26. doi: 10.1007/s00330-013-3052-2. Epub 2013 Nov 6.
8
Whole body fat: content and distribution.
Prog Nucl Magn Reson Spectrosc. 2013 Aug;73:56-80. doi: 10.1016/j.pnmrs.2013.04.001. Epub 2013 May 13.
9
Water/fat-resolved whole-heart Dixon coronary MRA: an initial comparison.
Magn Reson Med. 2014 Jan;71(1):156-63. doi: 10.1002/mrm.24648. Epub 2013 Feb 7.
10
Software for automated MRI-based quantification of abdominal fat and preliminary evaluation in morbidly obese patients.
J Magn Reson Imaging. 2013 May;37(5):1144-50. doi: 10.1002/jmri.23890. Epub 2012 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验